摘要:
An electron beam generator device includes a base body having a conductive surface and a electron-emission electrode having a carbon nanotube structure on the conductive surface of the substrate. The carbon nanotube structure constitutes a network structure which has plural carbon nanotubes and a crosslinked part including a chemical bond of plural functional groups. The chemical bond connects one end of one of the carbon nanotubes to another one of the carbon nanotubes. A method for producing an electron beam generator device, includes applying plural carbon nanotubes each having a functional group onto a conductive surface of a base body, and crosslinking the functional groups with a chemical bond to form a crosslinked part, thereby forming a carbon nanotube structure constituting a network structure having plural carbon nanotubes electrically connected to each other.
摘要:
Provided are a carbon nanotube structure more excellent in electric conductivity, thermal conductivity, and mechanical strength, and a method of manufacturing the carbon nanotube structure. A carbon nanotube composite structure is characterized by including: a first carbon nanotube structure in which functional groups bonded to plural carbon nanotubes are chemically bonded and mutually cross-linked to construct a network structure; and a second carbon nanotube structure in which functional groups bonded to plural carbon nanotubes are chemically bonded and mutually cross-linked to construct a network structure, the second carbon nanotube structure being combined with the network structure of the first carbon nanotube structure.
摘要:
A method of producing an organic-inorganic composite insulating material for electronic element comprises subjecting a mixture of an organic polymer or its solution and a metal alkoxide or its solution as a starting material to sol-gel reaction of the metal alkoxide in the presence of the organic polymer.
摘要:
To provide a resistance element having an electric resistance body with excellent stability and a method of manufacturing the same. The resistance element includes an electric resistance body, on a base body surface, consisting of a carbon nanotube structure layer 14, which configures a mesh structure in which at least plural carbon nanotubes are cross-linked to one another. The method of manufacturing the resistance element includes: an applying step of applying the base body surface 12 with a liquid solution containing carbon nanotubes having functional groups; and a cross-linking step of forming the carbon nanotube structure layer 14, used as an electric resistance body, that configures a mesh structure in which the plural carbon nanotubes are cross-linked to one another through curing of the liquid solution after application.
摘要:
The coating composition for an electric part contains carbon nanotubes each having a functional group, and a crosslinking agent crosslinking the functional groups through a crosslinking reaction associated with heating, and the crosslinking agent is glycerin and/or butanetriol. The method for forming a coating film contains: coating the coating composition for an electric part on a target material, and heating the coating composition to form a crosslinked film of carbon nanotubes.
摘要:
To provide a capacitor capable of utilizing carbon nanotube characteristics effectively to obtain excellent electric or mechanical characteristics, and a method of manufacturing the same. The capacitor is characterized by including two opposing electrodes, at least one of the two electrodes being formed from a coating film of a carbon nanotube structure in which plural carbon nanotubes with functional groups bonded constitute a mesh structure by cross-linking the functional groups through chemical bonding. The method of manufacturing a capacitor includes: a coating step for coating a surface of a base body with a solution that contains plural carbon nanotubes with functional groups bonded; and a cross-linking step for forming a carbon nanotube structure layer in which the functional groups are chemically bonded to one another, thereby causing the carbon nanotubes to cross-link to one another and build a mesh structure.
摘要:
To provide: an electrical member which can effectively apply characteristics of a carbon nanotube such as an electrode; and an electrical device such as an electrical switch. To provide: an electrical member provided with an electrical contact formed on a base body, in which the electrical contact has a carbon nanotube structure having a network structure constructed by mutually cross-linking functional groups bonded to multiple carbon nanotubes through chemical bonding of the functional groups together; an electrical device employing the electrical member; and a method of manufacturing an electrical member including the steps of: supplying a base body surface with a solution containing multiple carbon nanotubes to which multiple functional groups are bonded; and mutually cross-linking the multiple carbon nanotubes through chemical bonding of the multiple functional groups together to construct a network structure constituting a carbon nanotube structure as an electrical contact.
摘要:
To provide a wire excellent in electrical characteristics or in mechanical characteristics. A wire is constructed at least by a carbon nanotube structure layer (1) in which plural carbon nanotubes mutually cross-link to configure a mesh structure on the surface of a substrate (2). A method of manufacturing the wire includes: an applying step of applying to the surface of the substrate (2) a liquid solution containing a carbon nanotube having a functional group; and a step of curing the liquid solution after the application. An electromagnet scarcely causing a loss is formed using the wire.
摘要:
Provided is a nanotube-polymer composite which can effectively utilize characteristics of a carbon nanotube structure. The composite includes a carbon nanotube structure and a polymer, in which: the carbon nanotube structure has a network structure constructed by mutually cross-linking functional groups bonded to multiple carbon nanotubes through chemical bonding of the functional groups together; and the polymer is filled in the network structure. Also provided is a method of manufacturing a composite which includes the steps of: supplying a base body surface with a solution containing multiple carbon nanotubes to which multiple functional groups are bonded; mutually cross-linking the multiple carbon nanotubes through chemical bonding of the multiple functional groups together to construct a network structure constituting a carbon nanotube structure; impregnating the network structure with a polymer liquid forming a polymer; and combining the carbon nanotube structure and the polymer by curing the polymer liquid.
摘要:
Provided are a carbon nanotube structure more excellent in electric conductivity, thermal conductivity, and mechanical strength, and a method of manufacturing the carbon nanotube structure. A carbon nanotube composite structure is characterized by including: a first carbon nanotube structure in which functional groups bonded to plural carbon nanotubes are chemically bonded and mutually cross-linked to construct a network structure; and a second carbon nanotube structure in which functional groups bonded to plural carbon nanotubes are chemically bonded and mutually cross-linked to construct a network structure, the second carbon nanotube structure being combined with the network structure of the first carbon nanotube structure.