摘要:
A semiconductor die includes a via within a substrate material of the semiconductor die. The via includes a first conductive material having a first Coefficient of Thermal Expansion (CTE) and a second conductive material between the first conductive material and the substrate material of the semiconductor die. The second conductive material has a second CTE between the first CTE and a CTE of the substrate material of the semiconductor die. The first conductive material can be copper. The second conductive material can be tungsten and/or nickel. The substrate material can be silicon.
摘要:
Fabrication of a through glass via in a relatively thick glass substrate includes patterning a through glass via hard mask on a surface of the glass substrate. The fabrication also includes wet etching a portion of the glass substrate, through the hard mask, to create a partial through glass via. The wet etching may involve applying a vapor of an oxide etch chemical, such as HF and XeF6, or applying a wet oxide etch chemical, such as HF and XeF6. The fabrication further includes passivating the etched partial through glass via, removing bottom passivation from the partial through glass via, and repeating the etching, passivating and removing to create the through glass via. The resulting through glass via has a scalloped side wall, a vertical profile and a high aspect ratio.
摘要:
For a semiconductor wafer substrate having an inter layer dielectric, a through-silicon via may be formed in the substrate by first depositing an etch stop film on top of the inter layer dielectric, followed by etching an opening through the etch stop film, the interlayer dielectric, and into the substrate. A dielectric liner is then deposited over the etch stop film and into the opening. For some embodiments, the dielectric liner may be etched away except for those portions adhering to the sidewall of the opening. Then a conductive material may be deposited into the opening and on the etch stop film. The excess conductive material may then be removed, and for some embodiments the etch stop film may also be removed.
摘要:
A barrier layer deposited on the passivation layer of a semiconductor die decreases adhesion of glue used during stacking of semiconductor dies by altering chemical or structural properties of the passivation layer. During detachment of a carrier wafer from a wafer, the barrier layer reduces glue residue on the wafer by modifying the surface of the passivation layer. The barrier layer may be insulating films such as silicon dioxide, silicon nitride, silicon carbide, polytetrafluoroethylene, organic layers, or epoxy and may be less than two micrometers in thickness. Additionally, the barrier layer may be used to reduce topography of the semiconductor die to decrease adhesion of glues.
摘要:
A semiconductor component (such as a semiconductor wafer or semiconductor die) includes a substrate having a front side and a back side. The semiconductor die/wafer also includes a stress balance layer on the back side of the substrate. An active layer deposited on the front side of the substrate creates an unbalanced stress in the semiconductor wafer/die. The stress balance layer balances stress in the semiconductor wafer/die. The stress in the stress balance layer approximately equals the stress in the active layer. Balancing stress in the semiconductor component prevents warpage of the semiconductor wafer/die.
摘要:
A voltage-switchable dielectric layer may be employed on a die for electrostatic discharge (ESD) protection. The voltage-switchable dielectric layer functions as a dielectric layer between terminals of the die during normal operation of the die. When ESD events occur at the terminals of the die, a high voltage between the terminals switches the voltage-switchable dielectric layer into a conducting layer to allow current to discharge to a ground terminal of the die without the current passing through circuitry of the die. Thus, damage to the circuitry of the die is reduced or prevented during ESD events on dies with the voltage-switchable dielectric layer. The voltage-switchable dielectric layer may be deposited on the back side of a die for protection during stacking with a second die to form a stacked IC.
摘要:
A voltage-switchable dielectric layer may be employed on a die for electrostatic discharge (ESD) protection. The voltage-switchable dielectric layer functions as a dielectric layer between terminals of the die during normal operation of the die. When ESD events occur at the terminals of the die, a high voltage between the terminals switches the voltage-switchable dielectric layer into a conducting layer to allow current to discharge to a ground terminal of the die without the current passing through circuitry of the die. Thus, damage to the circuitry of the die is reduced or prevented during ESD events on dies with the voltage-switchable dielectric layer. The voltage-switchable dielectric layer may be deposited on the back side of a die for protection during stacking with a second die to form a stacked IC.
摘要:
A block layer deposited on a substrate before deposition of metal lines and etching of a through via enables low cost fabrication of through vias in a substrate using isotropic etching processes. For example, wet etching of a glass substrate may be used to fabricate through glass vias without undercut from the wet etching shorting metal lines on the glass substrate. The block layer prevents contact between a conductive layer lining the through via with more than one metal line on the substrate. The manufacturing process allows stacking of devices on substrates such as glass substrates and connecting the devices with through vias.
摘要:
A magnetic tunnel junction storage element for a spin transfer torque magnetoresistive random access memory (STT-MRAM) bit cell includes a bottom electrode layer, a pinned layer adjacent to the bottom electrode layer, a dielectric layer encapsulating a portion of the bottom electrode layer and the pinned layer, the dielectric layer including sidewalls that define a hole adjacent to a portion of the pinned layer, a tunneling barrier adjacent to the pinned layer, a free layer adjacent to the tunneling barrier, and a top electrode adjacent to the free layer, wherein a width of the bottom electrode layer and/or the pinned barrier in a first direction is greater than a width of a contact area between the pinned layer and the tunneling barrier in the first direction. Also a method of forming an STT-MRAM bit cell.
摘要:
By filling an air gap between tiers of a stacked IC device with a thermally conductive material, heat generated at one or more locations within one of the tiers can be laterally displaced. The lateral displacement of the heat can be along the full length of the tier and the thermal material can be electrically insulating. Through silicon-vias (TSVs) can be constructed at certain locations to assist in heat dissipation away from thermally troubled locations.