摘要:
Reduction of the alkaline developer solubility of novolak-diazoquinone positive resists by acylation of phenolic hydroxyl groups of the novolak resin.
摘要:
Positive photoresist compositions which comprise an alkali soluble resin material, a diazoquinone dissolution inhibitor which decompose on exposure to mid and near UV radiation, and a sulfonic acid ester of an imide or oxime which does not absorb such mid or near UV radiation. Resist images of high contrast are formed.
摘要:
Light transmissive structures include a light transmissive substrate that includes optical microstructures. The optical microstructures have a geometric feature that is configured to reduce glare in light transmitted through the light transmissive structure. Moreover, the plurality of optical microstructures also have a geometric feature that is configured to vary randomly and/or pseudorandomly across the light transmissive substrate so as to diffuse light transmitted through the light transmissive structure. Related fabrication methods are also described.
摘要:
A diffuser is configured to diffuse radiation from multiple light sources. The diffuser includes a substrate having optical structures that exhibit both microvariations and macrovariations along the substrate. For example, an array of microlenses may be provided that include at least one feature that varies as a function of the spacing between the light sources. Lighting systems using these diffusers may also be provided.
摘要:
Contrast enhancement films for a direct-view display include a substrate having first and second opposing sides, an array of optical microstructures on the first side, and an optically blocking film including an array of apertures on the second side. The contrast enhancement film is configured to mount between a direct-view display panel and an outer panel of the direct-view display.
摘要:
Portable projection screen assemblies include a case comprising a flexible projector screen held on a roller, the screen has a high ARR and a high-gain and can be adapted for use in uncontrolled indoor ambient lighting conditions. The case is configured with releasably matable first and second housing members and a slidably collapsible frame that slides open in a side-to-side orientation and unrolls the projector screen to at least one predetermined viewing configuration and closes together to encase the screen and frame therein. The projector screens may be particularly suitable for use with low-lumen projectors.
摘要:
Microstructures are fabricated by imaging a microstructure master blank that includes a radiation sensitive layer sandwiched between a pair of outer layers, on an imaging platform, to define the microstructures in the radiation sensitive layer. At least one of the outer layers is then removed. The microstructures that were defined in the radiation sensitive layer are developed. The radiation sensitive layer sandwiched between the pair of outer layers may be fabricated as webs, to provide microstructure master blanks.
摘要:
MEMS structures are provided that compensate for ambient temperature changes, process variations, and the like, and can be employed in many applications. These structures include an active microactuator adapted for thermal actuation to move in response to the active alteration of its temperature. The active microactuator may be further adapted to move in response to ambient temperature changes. These structures also include a temperature compensation element, such as a temperature compensation microactuator or frame, adapted to move in response to ambient temperature changes. The active microactuator and the temperature compensation element move cooperatively in response to ambient temperature changes. Thus, a predefined spatial relationship is maintained between the active microactuator and the associated temperature compensation microactuator over a broad range of ambient temperatures absent active alteration of the temperature of the active microactuator. In an alternative embodiment wherein the active microactuator is suspended within a frame above the substrate, the MEMS structure holds at least a portion of the active microactuator in a fixed position relative to the substrate over a broad range of ambient temperatures absent active alteration of the temperature of the active microactuator. By actively altering the temperature of the active microactuator, the active microactuator can be controllably moved relative to the temperature compensation microactuator and/or the underlying substrate. Related methods of compensating for the effects of ambient temperature variations are provided. Further, an overplating technique is provided for precisely sizing a gap defined within a MEMS structure.
摘要:
Mounting systems for micro-electromechanical system (MEMS) structures are provided including a non-Newtonian fluid having a threshold viscosity that is positioned between a MEMS base member and the MEMS structure so as to position the MEMS structure relative to the base member. A MEMS actuator is coupled to the MEMS structure. The MEMS actuator is positioned to cause movement of the MEMS structure relative to the MEMS base member by generating a force sufficient to exceed the threshold viscosity of the non-Newtonian fluid when the MEMS actuator is actuated. The MEMS structure may be a MEMS mirror positioned for pivotal movement about a bearing member to control tilt of the MEMS mirror.
摘要:
Microneedle arrays are fabricated by providing a sacrificial mold including a substrate and an array of posts, preferably solid posts, projecting therefrom. A first material is coated on the sacrificial mold including on the substrate and on the array of posts. The sacrificial mold is removed to provide an array of hollow tubes projecting from a base. The inner and outer surfaces of the array of hollow tubes are coated with a second material to create the array of microneedles projecting from the base. The sacrificial mold may be fabricated by fabricating a master mold, including an array of channels that extend into the master mold from a face thereof. A third material is molded into the channels and on the face of the master mold, to create the sacrificial mold. The sacrificial mold then is separated from the master mold. Alternatively, wire bonding may be used to wire bond an array of wires to a substrate to create the sacrificial mold. The first material preferably is coated on the sacrificial mold by plating. Prior to plating, a plating base preferably is formed on the sacrificial mold including on the substrate and on the array of posts. The inner and outer surfaces of the array of hollow tubes preferably are coated with the second material by overplating the second material on the inner and outer surfaces of the array of hollow tubes.