摘要:
A monolithic integrated circuit and method includes a substrate, a plurality of semiconductor device layers monolithically integrated on the substrate, and a metal wiring layer with vias interconnecting the plurality of semiconductor device layers. The semiconductor device layers are devoid of bonding or joining interface with the substrate. A method of fabricating a monolithic integrated circuit using a single substrate, includes fabricating semiconductor devices on a substrate, fabricating at least one metal wiring layer on the semiconductor devices, forming at least one dielectric layer in integral contact with the at least one metal wiring layer, forming contact openings through the at least one dielectric layer to expose regions of the at least one metal wiring layer, integrally forming, from the substrate, a second semiconductor layer on the dielectric layer, and in contact with the at least one metal wiring layer through the contact openings, and forming a plurality of non-linear semiconductor devices in said second semiconductor layer.
摘要:
The present disclosure relates to a secure device having a physical unclonable function. The device includes an integrated circuit having a semiconducting material in at least one via in a backend of the integrated circuit. The present disclosure also relates to a method for manufacturing a secure device having a physical unclonable function. The method includes providing an integrated circuit and adding a semiconducting material to at least one via in a backend of the integrated circuit. In some instances a property of the semiconducting material in the at least one via is measured to derive a signature.
摘要:
A monolithic integrated circuit and method includes a substrate, a plurality of semiconductor device layers monolithically integrated on the substrate, and a metal wiring layer with vias interconnecting the plurality of semiconductor device layers. The semiconductor device layers are devoid of bonding or joining interface with the substrate. A method of fabricating a monolithic integrated circuit using a single substrate, includes fabricating semiconductor devices on a substrate, fabricating at least one metal wiring layer on the semiconductor devices, forming at least one dielectric layer in integral contact with the at least one metal wiring layer, forming contact openings through the at least one dielectric layer to expose regions of the at least one metal wiring layer, integrally forming, from the substrate, a second semiconductor layer on the dielectric layer, and in contact with the at least one metal wiring layer through the contact openings, and forming a plurality of non-linear semiconductor devices in said second semiconductor layer.
摘要:
A microelectronic structure and a method for fabricating the microelectronic structure provide a plurality of voids interposed between a plurality of conductor layers. The plurality of voids is also located between a liner layer and an inter-level dielectric layer. The voids provide for enhanced electrical performance of the microelectronic structure.
摘要:
A microelectronic structure and a method for fabricating the microelectronic structure provide a plurality of voids interposed between a plurality of conductor layers. The plurality of voids is also located between a liner layer and an inter-level dielectric layer. The voids provide for enhanced electrical performance of the microelectronic structure.
摘要:
Method of manufacturing a structure which includes the steps of providing a structure having an insulator layer with at least one interconnect, forming a sub lithographic template mask over the insulator layer, and selectively etching the insulator layer through the sub lithographic template mask to form sub lithographic features spanning to a sidewall of the at least one interconnect.
摘要:
Method of manufacturing a structure which includes the steps of providing a structure having an insulator layer with at least one interconnect, forming a sub lithographic template mask over the insulator layer, and selectively etching the insulator layer through the sub lithographic template mask to form sub lithographic features spanning to a sidewall of the plurality of interconnects.
摘要:
A microelectronic structure and a method for fabricating the microelectronic structure provide a plurality of voids interposed between a plurality of conductor layers. The plurality of voids is also located between a liner layer and an inter-level dielectric layer. The voids provide for enhanced electrical performance of the microelectronic structure.
摘要:
A metal interconnect structure includes at least a pair of metal lines, a cavity therebetween, and a dielectric metal-diffusion barrier layer located on at least one portion of walls of the cavity. After formation of a cavity between the pair of metal lines, the dielectric metal-diffusion barrier layer is formed on the exposed surfaces of the cavity. A dielectric material layer is formed above the pair of metal lines to encapsulate the cavity. The dielectric metal-diffusion barrier layer prevents diffusion of metal and impurities from one metal line to another metal line and vice versa, thereby preventing electrical shorts between the pair of metal lines.
摘要:
A hard mask is formed on an interconnect structure comprising a low-k material layer and a metal feature embedded therein. A block polymer is applied to the hard mask layer, self-assembled, and patterned to form a polymeric matrix of a polymeric block component and containing cylindrical holes. The hard mask and the low-k material layer therebelow are etched to form cavities. A conductive material is plated on exposed metallic surfaces including portions of top surfaces of the metal feature to form metal pads. Metal silicide pads are formed by exposure of the metal pads to a silicon containing gas. An etch is performed to enlarge and merge the cavities in the low-k material layer. The metal feature is protected from the etch by the metal silicide pads. An interconnect structure having an air gap and free of defects to surfaces of the metal feature is formed.