摘要:
A semiconductor laser device includes: a substrate having a principal plane; a photonic crystal layer having an epitaxial layer of gallium nitride formed on substrate in a direction in which principal plane extends and a low refractive index material having a refractive index lower than that of epitaxial layer; an n-type clad layer formed on substrate; a p-type clad layer formed on substrate; an active layer that is interposed between n-type clad layer and p-type clad layer and emits light when a carrier is injected thereinto; and a GaN layer that covers a region directly on photonic crystal layer. Thus, the semiconductor laser device can be manufactured without fusion.
摘要:
A semiconductor laser device (1) includes: a substrate (3) having a principal plane (3a); a photonic crystal layer (7) having an epitaxial layer (2a) of gallium nitride formed on substrate (3) in a direction in which principal plane (3a) extends and a low refractive index material (2b) having a refractive index lower than that of epitaxial layer (2a); an n-type clad layer (4) formed on substrate (3); a p-type clad layer (6) formed on substrate (3); an active layer (5) that is interposed between n-type clad layer (4) and p-type clad layer (6) and emits light when a carrier is injected thereinto; and a GaN layer (12) that covers a region directly on photonic crystal layer (7). Thus, the semiconductor laser device can be manufactured without fusion.
摘要:
A fabrication method of a surface-emitting laser element includes a step of preparing a conductive GaN multiple-region substrate including a high dislocation density high conductance region, a low dislocation density high conductance region and a low dislocation density low conductance region, as a conductive GaN substrate; a semiconductor layer stack formation step of forming a plurality of group III-V compound semiconductor layer stack including an emission layer on the substrate; and an electrode formation step of forming a semiconductor side electrode and a substrate side electrode. The semiconductor layer and electrodes are formed such that an emission region into which carriers flow in the emission layer is located above and within the span of the low dislocation density high conductance region. Thus, a surface-emitting laser element having uniform light emission at the emission region can be obtained with favorable yield.
摘要:
A fabrication method of a surface-emitting laser element includes a step of preparing a conductive GaN multiple-region substrate including a high dislocation density high conductance region, a low dislocation density high conductance region and a low dislocation density low conductance region, as a conductive GaN substrate; a semiconductor layer stack formation step of forming a group III-V compound semiconductor layer stack including an emission layer on the substrate; and an electrode formation step of forming a semiconductor layer side electrode and a substrate side electrode. The semiconductor layer and electrodes are formed such that an emission region into which carriers flow in the emission layer is located above and within the span of the low dislocation density high conductance region. Thus, a surface-emitting laser element having uniform light emission at the emission region can be obtained with favorable yield.
摘要:
There is provided a method of fabricating a semiconductor laser including a two-dimensional photonic crystal. The method comprises the steps of growing an InX1Ga1−X1N (0
摘要:
There is provided a method of fabricating a semiconductor laser including a two-dimensional photonic crystal. The method comprises the steps of growing an InX1Ga1-X1N (0
摘要:
The present method of manufacturing a GaN-based film includes the steps of preparing a composite substrate, the composite substrate including a support substrate in which a coefficient of thermal expansion in a main surface is more than 0.8 time and less than 1.2 times as high as a coefficient of thermal expansion of GaN crystal in a direction of a axis and a single crystal film arranged on a side of the main surface of the support substrate, the single crystal film having threefold symmetry with respect to an axis perpendicular to a main surface of the single crystal film, and forming a GaN-based film on the main surface of the single crystal film in the composite substrate. Thus, a method of manufacturing a GaN-based film capable of manufacturing a GaN-based film having a large main surface area and less warpage is provided.
摘要:
A method of manufacturing a GaN-based semiconductor device includes the steps of: preparing a composite substrate including: a support substrate having a thermal expansion coefficient at a ratio of not less than 0.8 and not more than 1.2 relative to a thermal expansion coefficient of GaN; and a GaN layer bonded to the support substrate, using an ion implantation separation method; growing at least one GaN-based semiconductor layer on the GaN layer of the composite substrate; and removing the support substrate of the composite substrate by dissolving the support substrate. Thus, the method of manufacturing a GaN-based semiconductor device is provided by which GaN-based semiconductor devices having excellent characteristics can be manufactured at a high yield ratio.
摘要:
A photonic crystal laser comprises an n-type substrate, an n-type clad layer, an active layer, a p-type clad layer, a photonic crystal layer, a p-type electrode, an n-type electrode and a package member. The n-type clad layer is formed on a first surface of the n-type substrate. The active layer is formed on the n-type clad layer. The p-type clad layer is formed on the active layer. The photonic crystal layer is formed between the n-type clad layer and the active layer or between the active layer and the p-type clad layer, and includes a photonic crystal portion. The p-type electrode is formed on the photonic crystal portion. The n-type electrode is formed on a second surface, and includes a light-transmitting portion arranged on a position opposed to the photonic crystal portion and an outer peripheral portion having lower light transmittance than the light-transmitting portion.
摘要:
An injected current restriction region for restricting an increase in defects by restricting an injected current for light emission is provided inside a ZnSe-based LED. When an end of a light transmitting Au electrode is separated from a cleavage plane, a region near the cleavage plane serves as the injected current restriction region.