Abstract:
A lithographic apparatus has a patterning support constructed to support a patterning device and a substrate support constructed to support a substrate. At least one of the patterning support and the substrate support is moved by an electromagnetic actuator. The actuator has a first part and a second part that are movable relative to each other. The first part has a coil structure, and the second part including a plurality of permanent magnets interacting with the coil structure. The second part is provided with a cooling structure arranged adjacent the permanent magnets. Cooling ducts are arranged between adjacent permanent magnets, or on a side of the permanent magnets facing the coil structure.
Abstract:
A displacement apparatus comprising a first part and a second part, which can be displaced relative to each other in first and second different directions. The apparatus being suitable for use in a lithographic apparatus for positioning the mask holder with respect to the projection beam and for positioning the wafer substrate table with respect to the patterned beam. The first part comprises a first and second coil system in which an alternating current is provided by a power supply. The second part comprises a conductive platen which is disposed in a zone in which a magnetic field is induced when power is supplied to the coil systems. The coil system and platen are arranged with respect to each other so that when currents are passed through the coils, a magnetic field induced in the platen causes displacement between the platen and the coils in the first and second different directions.
Abstract:
A motor includes a magnet assembly to generate a magnetic field. The field includes along the first direction parts which are alternately orientated in the first and the second direction. The parts extend in a third direction which is perpendicular to the first and the second direction. The motor further includes a first coil winding to carry a first current. The first coil winding to extend in the first direction between parts of the magnetic field orientated in the second direction, to generate the force in the first direction. The motor also includes a second coil winding to carry a second current. The second coil winding to extend in the first direction between parts of the magnetic field substantially orientated in the first direction, to generate the force in the second direction.
Abstract:
An article support constructed to support an article for lithographic processing purposes is disclosed. The article support includes a channel configuration arranged to guide thermally stabilizing media in the article support to provide thermal stabilization to the article, wherein the channel configuration comprises an input channel structure and an output channel structure, the input and output channel structures arranged in a nested configuration and connected to each other by a fine grid structure provided at or near a surface of the article support. A lithographic apparatus and device manufacturing incorporating the article support is also disclosed.
Abstract:
An optical element for correcting aberrations in an optical apparatus has a casing. The casing is filled with liquid and has a support layer and a cover layer designed to pass light of a predetermined wavelength range. The casing accommodates several actuators. Each actuator has a first end supporting the cover layer and a second end supporting the support layer. Each actuator is able to locally change a local distance between the support layer and the cover layer to correct for local aberrations in a light beam directed to the optical element by providing local phase shifts. The optical element may be used in a lithographic apparatus.
Abstract:
A moveable member is provided which extends the top surface of a substrate table, in plan, beyond a bumper which protects the substrate table during collision. The moveable member may be retracted to a retracted position in which it no longer extends beyond the bumper. In this way it is possible to move two substrate tables together and to allow the retractable member to pass under a liquid supply system which normally provides liquid between the projection system and a substrate without turning off of the liquid supply system.
Abstract:
The invention pertains to a lithographic apparatus that includes a docking system for positioning a patterning device, such as a reticle, relative to the reticle stage. The lithographic projection apparatus has an operational cycle that includes a projection phase, in which the reticle stage carries the patterning device and an exchange phase, in which the patterning device is exchanged and the docking system positions the patterning device relative to the reticle stage. The docking system is configured to be spaced from the patterning device during the projection phase in order to ensure that a higher accuracy of the projected image is obtained.
Abstract:
A lithographic apparatus is disclosed. The apparatus includes a substrate table constructed to hold a substrate. The substrate table is moveable to transfer the substrate between a substrate measuring position and a substrate processing position. The apparatus also includes a measuring system configured to measure at least one aspect or characteristic of the substrate when the substrate table holds the substrate in the measuring position. The measuring system is configured to direct at least one measuring beam and/or field towards a surface of the substrate. A projection system is configured to project a patterned radiation beam onto a target portion of the substrate when the substrate table holds the substrate in the substrate processing position, and a conditioning system is configured to supply a conditioning fluid to at least part of a path of the measuring beam and/or field of the measuring system to condition the part of the path.
Abstract:
A lithographic apparatus is disclosed that has an imprint template or a template holder configured to hold an imprint template, and a substrate table arranged to receive a substrate, the apparatus further comprising walls which together with the substrate table and the imprint template or the template holder, are configured to form an enclosed space which is substantially sealed from a surrounding area.
Abstract:
An imprint lithography apparatus is disclosed that has a substrate table configured to hold a substrate, a template holder configured to hold an imprint template, the imprint template or the template holder having a template alignment mark configured to be imprinted onto the substrate table or onto a substrate to form an imprinted alignment mark, the imprint template having a functional pattern, and the template alignment mark and the functional pattern having a known spatial relationship, and an alignment sensor configured to determine the location of the imprinted alignment mark.