Abstract:
A high electron mobility transistor (HEMT) includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer and is different from the first III-V compound layer in composition. A salicide source feature and a salicide drain feature are in contact with the first III-V compound layer through the second III-V compound layer. A gate electrode is disposed over a portion of the second III-V compound layer between the salicide source feature and the salicide drain feature.
Abstract:
A method of forming a high electron mobility transistor (HEMT) includes a first III-V compound layer and a second III-V compound layer disposed on the first III-V compound layer and is different from the first III-V compound layer in composition. A source feature and a drain feature are disposed on the second III-V compound layer. A p-type layer is disposed on a portion of the second III-V compound layer between the source feature and the drain feature. A gate electrode is disposed on the p-type layer. A capping layer is disposed on the second III-V compound layer.
Abstract:
A high electron mobility transistor (HEMT) includes a first compound layer. A second III-V compound layer is disposed on the first III-V compound layer and is different from the first III-V compound layer in composition. A salicide source feature and a salicide drain feature are in contact with the first III-V compound layer through the second III-V compound layer. A gate electrode is disposed over a portion of the second compound layer between the salicide source feature and the salicide drain feature.
Abstract:
A transistor includes an isolation region surrounding an active region. The transistor also includes a gate dielectric layer over a portion of the active region. The transistor further includes a gate electrode over the gate dielectric layer. The portion of the active region under the gate dielectric layer includes a channel region between a drain region and a source region, and at least one wing region adjoining the channel region. The at least one wing region has a base edge adjoining the channel region. The at least one wing region is polygonal or curved.
Abstract:
High voltage semiconductor devices are described herein. An exemplary semiconductor device includes a first doped region and a second doped region disposed in a substrate. The first doped region and the second doped region are oppositely doped and adjacently disposed in the substrate. A first isolation structure and a second isolation structure are disposed over the substrate, such that each are disposed at least partially over the first doped region. The first isolation structure is spaced apart from the second isolation structure. A resistor is disposed over a portion of the first isolation structure and electrically coupled to the first doped region. A field plate disposed over a portion of the second doped region and electrically coupled to the second doped region.
Abstract:
A method for fabricating a high voltage semiconductor transistor includes growing a first well region over a substrate having a first conductivity type, the first well region having a second type of conductivity. First, second and third portions of a second well region having the first type of conductivity are doped into the first well region. A first insulating layer is grown in and over the first well portion within the second well region. A second insulating layer is grown on the substrate over the third portion of the second well region. An anti-punch through region is doped into the first well region. A gate structure is formed on the substrate. A source region is formed in the first portion of the second well region on an opposite side of the gate structure from the first insulating layer. A drain region is formed in the first well region.
Abstract:
A method of forming a device includes forming a buried well region of a first dopant type in a substrate. A well region of the first dopant type is formed over the buried well region. A first well region of a second dopant type is formed between the well region of the first dopant type and the buried well region of the first dopant type. A second well region of the second dopant type is formed in the well region of the first dopant type. An isolation structure is formed at least partially in the well region of the first dopant type. A first gate electrode is formed over the isolation structure and the second well region of the second dopant type.
Abstract:
A high voltage metal-oxide-semiconductor laterally diffused device (HV LDMOS), particularly an insulated gate bipolar junction transistor (IGBT), and a method of making it are provided in this disclosure. The device includes a semiconductor substrate, a gate structure formed on the substrate, a source and a drain formed in the substrate on either side of the gate structure, a first doped well formed in the substrate, and a second doped well formed in the first well. The gate, source, second doped well, a portion of the first well, and a portion of the drain structure are surrounded by a deep trench isolation feature and an implanted oxygen layer in the silicon substrate.
Abstract:
A method of forming a high electron mobility transistor (HEMT) that includes epitaxially growing a second III-V compound layer on a first III-V compound layer. A carrier channel is located between the first III-V compound layer and the second III-V compound layer. A source feature and a drain feature are formed on the second III-V compound layer. A p-type layer is deposited on a portion of the second III-V compound layer between the source feature and the drain feature. A gate electrode is formed on a portion of the p-type layer.
Abstract:
A method of forming a high electron mobility transistor (HEMT) includes epitaxially growing a second III-V compound layer on a first III-V compound layer. The method further includes partially etching the second III-V compound layer to form two through holes in the second III-V compound layer. Additionally, the method includes forming a silicon feature in each of two through holes. Furthermore, the method includes depositing a metal layer on each silicon feature. Moreover, the method includes annealing the metal layer and each silicon feature to form corresponding salicide source/drain features. The method also includes forming a gate electrode over the second III-V compound layer between the salicide source/drain features.