摘要:
In a method of manufacture for a nitride semiconductor light emitting element including: a monocrystalline substrate; and an AlN layer; and a first nitride semiconductor layer of a first electrical conductivity type; and a light emitting layer made of an AlGaN-based material; and a second nitride semiconductor layer of a second electrical conductivity type, a step of forming the AlN layer includes: a first step of supplying an Al source gas and a N source gas into the reactor to generate a group of MN crystal nuclei having Al-polarity to be a part of the AlN layer on the surface of the monocrystalline substrate; and a second step of supplying the Al source gas and the N source gas into the reactor to form the AlN layer, after the first step.
摘要:
In a method of manufacture for a nitride semiconductor light emitting element including: a monocrystalline substrate; and an AlN layer; and a first nitride semiconductor layer of a first electrical conductivity type; and a light emitting layer made of an AlGaN-based material; and a second nitride semiconductor layer of a second electrical conductivity type, a step of forming the AlN layer includes: a first step of supplying an Al source gas and a N source gas into the reactor to generate a group of AlN crystal nuclei having Al-polarity to be a part of the AlN layer on the surface of the monocrystalline substrate; and a second step of supplying the Al source gas and the N source gas into the reactor to form the AlN layer, after the first step.
摘要:
An ultraviolet semiconductor light-emitting element comprises a light-emitting layer which is arranged between an n-type nitride semiconductor layer and a p-type nitride semiconductor layer, an n-electrode that is in contact with the n-type nitride semiconductor layer, and a p-electrode that is in contact with the p-type nitride semiconductor layer. The p-type nitride semiconductor layer is provided with a p-type contact layer that has a band gap smaller than that of the light-emitting layer and is in ohmic contact with the p-electrode. A depressed part is formed in a reverse side surface of a surface of the p-type nitride semiconductor layer that faces the light-emitting layer so as to avoid a formation region on which the p-electrode is formed. A reflective film that reflects ultraviolet light emitted from the light-emitting layer is formed on an inner bottom surface of the depressed part.
摘要:
An ultraviolet semiconductor light-emitting element comprises a light-emitting layer which is arranged between an n-type nitride semiconductor layer and a p-type nitride semiconductor layer, an n-electrode that is in contact with the n-type nitride semiconductor layer, and a p-electrode that is in contact with the p-type nitride semiconductor layer. The p-type nitride semiconductor layer is provided with a p-type contact layer that has a band gap smaller than that of the light-emitting layer and is in ohmic contact with the p-electrode. A depressed part is formed in a reverse side surface of a surface of the p-type nitride semiconductor layer that faces the light-emitting layer so as to avoid a formation region on which the p-electrode is formed. A reflective film that reflects ultraviolet light emitted from the light-emitting layer is formed on an inner bottom surface of the depressed part.
摘要:
The nitride semi-conductive light emitting layer in this invention comprises a single crystal substrate 1 for epitaxial growth, a first buffer layer 2, an n-type nitride semi-conductive layer 3, a second buffer layer 4, a third buffer layer 5, a light emitting layer 6, and a p-type nitride semi-conductive layer 7. The first buffer layer 2 is laminated to a top side of the single crystal substrate 1. The n-type nitride semi-conductive layer 3 is laminated to a top side of the first buffer layer 2. The third buffer layer 5 is laminated to a top side of the n-type nitride semi-conductive layer 3 with the second buffer layer 4 being interposed therebetween. The light emitting layer 6 is laminated to a top side of the third buffer layer 5. The p-type nitride semi-conductive layer 7 is laminated to a top side of the light emitting layer 6. The third buffer layer 5 serves as a planarized base for growth of the light emitting layer 6 so as to reduce a threading dislocation and a residual distortion in the light emitting layer 6. This nitride semi-conductive light emitting device reduces a piezoelectric field in the light emitting layer by exploiting carriers generated in the third buffer layer 5. The third buffer layer 5 is doped with an Si impurity serving as a donor.
摘要:
The nitride semiconductor light-emitting element of the invention has a stacked structure of a buffer layer, an n-type nitride semiconductor layer, a light-emitting layer, and a p-type nitride semiconductor layer, on one surface side of a single crystal substrate of a sapphire substrate. A nitride semiconductor multilayer structure as the buffer layer includes: a plurality of island-like nuclei formed of AlN and formed on the one surface of the single crystal substrate; a first nitride semiconductor layer formed of an AlN layer and formed on the one surface side of the single crystal substrate so as to fill gaps between adjacent nuclei and to cover all the nuclei; and a second nitride semiconductor layer formed of an AlN layer and formed on the first nitride semiconductor layer.
摘要:
A nitride semi-conductor light emitting device has a p-type nitride semi-conductor layer 7, an n-type nitride semi-conductor layer 3, and a light emission layer 6 which is interposed between the p-type nitride semi-conductor layer 7 and the n-type nitride semi-conductor layer 3. The light emission layer 6 has a quantum well structure with a barrier layer 6b and a well layer 6a. The barrier layer 6b is formed of AlaGabIn(1-a-b)N (0 0), and contains a first impurity at a concentration of A greater than zero. The well layer 6a is formed of AlcGadIn(1-c-d)N (0 0), and contains a second impurity at a concentration of B equal to or greater than zero. In the nitride semi-conductor light emitting device of the present invention, the concentration of A is larger than that of B, in order that the barrier layer 6b has a concentration of oxygen smaller than that in the well layer 6a.
摘要:
The nitride semi-conductive light emitting layer in this invention comprises a single crystal substrate 1 for epitaxial growth, a first buffer layer 2, an n-type nitride semi-conductive layer 3, a second buffer layer 4, a third buffer layer 5, a light emitting layer 6, and a p-type nitride semi-conductive layer 7. The first buffer layer 2 is laminated to a top side of the single crystal substrate 1. The n-type nitride semi-conductive layer 3 is laminated to a top side of the first buffer layer 2. The third buffer layer 5 is laminated to a top side of the n-type nitride semi-conductive layer 3 with the second buffer layer 4 being interposed therebetween. The light emitting layer 6 is laminated to a top side of the third buffer layer 5. The p-type nitride semi-conductive layer 7 is laminated to a top side of the light emitting layer 6. The third buffer layer 5 serves as a planarized base for growth of the light emitting layer 6 so as to reduce a threading dislocation and a residual distortion in the light emitting layer 6. This nitride semi-conductive light emitting device reduces a piezoelectric field in the light emitting layer by exploiting carriers generated in the third buffer layer 5. The third buffer layer 5 is doped with an Si impurity serving as a donor.
摘要:
In a process of fabricating a nitride nitride semi-conductor layer of AlaGabIn(1-a-b)N(0 0), the AlGaInN layer is grown at a growth rate less than 0.09 μm/h according to the metal organic vapor phase epitaxy (MOPVE) method. The AlGaInN layer fabricated by the process in the present invention exhibits a high quality with low defect, and increases internal quantum yield.
摘要:
In a process of fabricating a nitride nitride semi-conductor layer of AlaGabIn(1-a-b)N (0 0), the AlGaInN layer is grown at a growth rate less than 0.09 μm/h according to the metal organic vapor phase epitaxy (MOPVE) method. The AlGaInN layer fabricated by the process in the present invention exhibits a high quality with low defect, and increases internal quantum yield.