摘要:
A liquid crystal cell and liquid crystal display device include: two electrode substrates facing each other through a plurality of spacers; each electrode substrate being formed by superimposing a glass substrate, a transparent electrode and an alignment film; and an antiferroelectric liquid crystal being injected between alignment films; wherein, an alignment treatment is performed to each alignment film so that an angle of layer rotation of the antiferroelectric liquid crystal is defined within a predetermined allowable range.
摘要:
There is disclosed herein a ferroelectric liquid crystal electro-optical apparatus of the maxtrix type comprising a liquid crystal cell having first and second electrode substrates which include n striped line electrodes and m striped column electrodes, respectively, facing at right angles each other. A ferroelectric liquid crystal is put in therebetween so as to form n by m indication picture elements. Also included in the apparatus a scanning drive device adapted to supply a scanning signal and a data signal to the n striped line electrodes and the m striped column electrodes, respectively. The ferroelectric liquid crystal shows three stable states in accordance with an application voltage and has a light transmittance with a hysteresis sufficient to a dynamic drive in accordance with increase or decrease in the application voltage in a predetermined voltage range. The scanning drive device produces a first combination signal as a signal running to variation from a voltage below a refernece voltage in a predetermined one polarity voltage range to a voltage above the reference voltage and produces a second combination signal as a signal which does not exceed the reference voltage in the range, and supplies a direct-current combination signal between the electrodes after the supply of the first and second combination signal thereto.
摘要:
A liquid crystal orientation controlling membrane, characterized by the polyimide membrane comprising the repeating unit represented by the formula: ##STR1## wherein Ar.sub.1 represents a diamine moiety which is selected from the group consisting of ##STR2## Ar.sub.2 represents tetravalent carboxylic acid moiety which is selected from the group consisting of ##STR3## Another invention is a ferroelectric liquid crystal element or an antiferroelectric liquid crystal element using the polyimide orientation controlling membrane mentioned above. The present liquid crystal element is used to a large picture display with high resolution, a TV picture display with wide viewing angle and a liquid crystal optical shutter.
摘要:
In order to perform processing of analyzing card data in an appropriate amount of time depending on the number of tracks actually present on a magnetic stripe with use of a single demodulation circuit, the single demodulation circuit produces, based on magnetic data read by a magnetic head, a single common card running signal obtained by ORing card running signals of tracks present on the magnetic stripe of the magnetic card, a clock signal of each track present on the magnetic stripe, and a data signal of each track present on the magnetic stripe. A card running signal generation circuit generates, based on the common card running signal and the clock signal of each track, an individual card running signal of each track present on the magnetic stripe. A data analysis processing unit determines, based on presence or absence of the individual card running signal, presence or absence of a track on the magnetic stripe to perform processing of analyzing the data signal only for the track determined to be present on the magnetic stripe.
摘要:
The liquid crystal display device according to the present invention includes a pair of substrates, and a liquid crystal layer disposed between the pair of substrates, wherein the liquid crystal layer includes a liquid crystal material having a negative dielectric constant anisotropy, at least one of the pair of substrates is provided with an alignment film for vertically aligning adjacent liquid crystal molecules, and a polymer layer formed on the alignment film for controlling the alignment of the adjacent liquid crystal molecules, the polymer layer is formed by polymerization of at least one monomer, the polymerization being initiated by radicals generated of the monomer upon absorption of light, the alignment film includes a polymer compound having a main chain that contains an imide structure, and the main chain has an imidization ratio of 50% or more.
摘要:
While bumps formed on pads of a semiconductor chip and a board having a sheet-like seal-bonding resin stuck on its surface are set face to face, the bumps and the board are pressed to each other with a tool, thereby forming a semiconductor chip mounted structure in which the seal-bonding resin is filled between the semiconductor chip and the board and in which the pads of the semiconductor chip and the electrodes of the board are connected to each other via the bumps, respectively. Entire side faces at corner portions of the semiconductor chip are covered with the seal-bonding resin. Therefore, loads generated at the corner portions due to board flexures for thermal expansion and contraction differences among the individual members caused by heating and cooling during mounting as well as for mechanical loads after mounting so that internal breakdown of the semiconductor chip can be avoided.
摘要:
A resin-sealed semiconductor device with built-in heat sink prevents internal bulging and cracking caused by exfoliation of a semiconductor element from the heat sink when the vapor pressure of moisture absorbed into a gap between the semiconductor element and the heat sink rises during mounting of the semiconductor device to a printed circuit board using lead-free solder. By providing a plurality of separated die pads (502) in a mounting area for a semiconductor element (301) and adhering the semiconductor element (301) to the heat sink (105) via the die pads (502), space is opened up between the semiconductor element (301) and the heat sink (105) for sealing resin (304) to run into.
摘要:
While bumps formed on pads of a semiconductor chip and a board having a sheet-like seal-bonding use resin stuck on its surface are set face to face, the bumps and the board are pressed to each other with a tool, thereby forming a semiconductor chip mounted structure in which the seal-bonding use resin is filled between the semiconductor chip and the board and in which the pads of the semiconductor chip and the electrodes of the board are connected to each other via the bumps, respectively. In the semiconductor chip mounted structure formed in this way, entire side faces at the corner portions of the semiconductor chip are covered with the seal-bonding use resin. As a result, loads generated at corner portions of the semiconductor chip due to board flexures for thermal expansion differences and thermal contraction differences among the individual members caused by heating process and cooling process in mounting operation as well as for mechanical loads after the mounting operation so that internal breakdown of the semiconductor chip can be avoided.
摘要:
A resin molded type semiconductor device has: a semiconductor chip (12) which is mounted on a die pad portion (11) of a lead frame (9); thin metal wires (14) which connect terminals of the semiconductor chip (12) to inner lead portions (13) of the lead frame (9); and a sealing resin (15), and the lead frame (9) is subjected to an upsetting process so that a supporting portion (11) is located at a position higher than the inner lead portions (13). Since the sealing resin of a thickness corresponding to the step difference of the upsetting exists below the supporting portion, the adhesiveness between the lead frame and the sealing resin can be improved, and high reliability and thinning are realized. Since at least one groove portion is disposed in the surface of each of the inner lead portions (13), the anchoring effect to the sealing resin (15), stress acting on a lead portion of a product, and stress to the thin metal wires (14) can be relaxed, and leads and the thin metal wires can be prevented from peeling off.
摘要:
Generated heat is effectively dissipated to prevent thermal deformation of a gas ejector plate in a plasma processing apparatus which is capable of processing a substrate of large scale. A temperature controlling plate 106 and heat conductor 109 are fixedly disposed on the upper electrode-cum-gas ejector plate 105 which is provided with a multiplicity of gas ejecting apertures 105a disposed at regular intervals. The heat conductor 109 is constructed to be a latticed member for effectively conducting heat from the gas ejector plate 105 to the temperature controlling plate 106, and has a plurality of gas pressure equalizing spaces 109a defined between crossing bars of the lattice for pressuring process gas to be evenly ejected through the gas ejecting apertures 105a.