摘要:
An infrared gas detector includes an infrared reception member, a package configured to accommodate the infrared reception member, and an optical filter. The infrared reception member includes a plurality of thermal infrared detection elements each configured to detect infrared based on heat caused by received infrared. The thermal infrared detection elements are placed side by side. The package is provided with a window opening configured to allow the infrared reception member to receive infrared. The optical filter is attached to the package so as to cover the window opening, and includes a plurality of filter elements respectively corresponding to the plurality of the thermal infrared detection elements. Each of the filter elements includes a filter substrate made of an infrared transparent material, a transmission filter configured to transmit infrared of a selected wavelength, and a cut-off filter configured to absorb infrared of a wavelength longer than the selected wavelength. The transmission filter and the cut-off filter are formed over the filter substrate. The filter substrate is thermally coupled to the package. The transmission filters of the respective filter elements are configured to transmit infrared of the different selected wavelengths.
摘要:
The infrared optical filter of the present invention comprises a substrate formed of an infrared transmitting material and a plurality of filter parts arranged side by side on one surface side of the substrate. Each filter part includes: a first λ/4 multilayer film in which two kinds of thin films having mutually different refractive indices but an identical optical film thickness are alternately stacked; a second λ/4 multilayer film in which the two kinds of thin films are alternately stacked, said second λ/4 multilayer film being formed on the opposite side of the first λ/4 multilayer film from the substrate side, and; and a wavelength selection layer interposed between the first λ/4 multilayer film and the second λ/4 multilayer film, said wavelength selection layer having an optical film thickness different from the optical film thickness of each the thin film according to a desired selection wavelength. A low refractive index material of the first λ/4 multilayer film and the second λ/4 multilayer film is an oxide, and a high refractive index material thereof is a semiconductor material of Ge. A material of the wavelength selection layer is identical to a material of the second thin film from the top of the first λ/4 multilayer film.
摘要:
An infrared flame detector of the present invention has an infrared radiation receiving element accommodated in a package. In the infrared radiation receiving element, a set of two pyroelectric elements are arranged side by side and connected in anti-series on a pyroelectric element forming substrate. An infrared optical filter includes a filter forming substrate made of an infrared radiation transmitting material, a set of two narrowband transmission filter sections formed at positions respectively corresponding to positions of the pyroelectric elements on a first surface of the filter forming substrate and configured to transmit infrared radiation of a first selective wavelength and infrared radiation of a second selective wavelength, and a broadband blocking filter section formed on a second surface of the filter forming substrate and configured to absorb infrared radiation of a wavelength longer than an upper limit of an infrared reflection band.
摘要:
The invention prevents a wiring layer in a memory region from being exposed to prevent a change in wire resistance and degradation of reliability. A SiO2 film as an etching stopper film which transmits ultraviolet light is formed on pad electrodes and an interlayer insulation film. Then, the SiO2 film on the pad electrodes is etched selectively and the SiO2 film in an EPROM region is left. A silicon nitride film and a polyimide film are then formed on the SiO2 film and on the pad electrodes where the SiO2 film is removed, as a protection film which does not transmit ultraviolet light. The silicon nitride film and the polyimide film on the pad electrodes and in the EPROM region are then selectively removed by etching. Since the SiO2 film functions as an etching stopper at this time, the interlayer insulation film under the SiO2 film is prevented from being etched and a control gate line metal layer is prevented from being exposed.
摘要:
A color filter is made from a silicon nitride, and has a multilayer structure including a silicon nitride layer and an airlayer. A multilayer film that selectively transmits green light has a seven-layer structure, in which two silicon nitride layers and one air layer is formed both above and below a spacer layer which is the air layer. On the other hand, each of a multilayer film that selectively transmits red light and a multilayer film that selectively transmits blue light has a silicon nitride layer as the spacer layer, and two silicon nitride layers and two air layers are formed both above and below the spacer layer. The silicon nitride layer is held by a holding part at a periphery thereof. Also, a hole is formed between multilayers for a manufacturing reason.
摘要:
The semiconductor laser device according to the present invention includes: a semiconductor substrate; an active layer having a stripe structure formed on the semiconductor substrate; and a buried layer formed on the semiconductor substrate and in a vicinity of the active layer, the buried layer including Fe and Ti.
摘要:
Photoelectric converters are arranged two-dimensionally in a semiconductor substrate. A planarizing layer, a light shielding film, a further planarizing layer and condenser lenses are formed sequentially on the semiconductor substrate and the photoelectric converters. The light shielding film has apertures at positions corresponding to the photoelectric conversion devices. Multilayer interference filters that transmit either a red, green or blue wavelength component of light are disposed in the apertures.
摘要:
This invention is directed to offer a semiconductor device having a structure capable of relaxing a mechanical stress applied to a bonding pad. A third interlayer insulation film having via holes is formed on a second interlayer insulation film to cover a third wiring layer. A third conductive layer is formed in the via hole. The third interlayer insulation film is composed of an array of a plurality of hexagonal column-shaped interlayer insulation films. And the via hole and the third conductive layer are formed to surround each hexagonal column-shaped interlayer insulation film. A fourth wiring layer connected with the third wiring layer through the third conductive layer is formed. The fourth wiring layer makes an uppermost wiring layer in an embodiment of this invention and serves as the bonding pad.
摘要:
This invention is directed to offer a semiconductor device having a structure capable of relaxing a mechanical stress applied to a bonding pad. A third interlayer insulation film having via holes is formed on a second interlayer insulation film to cover a third wiring layer. A third conductive layer is formed in the via hole. The third interlayer insulation film is composed of an array of a plurality of hexagonal column-shaped interlayer insulation films. And the via hole and the third conductive layer are formed to surround each hexagonal column-shaped interlayer insulation film. A fourth wiring layer connected with the third wiring layer through the third conductive layer is formed. The fourth wiring layer makes an uppermost wiring layer in an embodiment of this invention and serves as the bonding pad.
摘要:
A solid-state imaging device 101 is composed of a transparent film 204, a color filter 205, a planarizing film 207, and a plurality of microlenses 208 that are sequentially formed on a semiconductor substrate 201. A photodiode 202 is formed in a surface of the semiconductor substrate 201 that is closer to the transparent film 204. A light shielding film 203 is formed in a surface of the transparent film 204 that is closer to the semiconductor substrate 201. Color filters 205 respectively corresponding to two adjacent pixels are partitioned by a light shielding wall 206. The light shielding wall 206 is a λ/4 multilayer film that reflects visible light.