摘要:
A semiconductor light-emitting device and a method for manufacturing the same can include a wavelength converting layer in order to emit various colored lights including white light. The device can include a board, a frame located on the board, at least one light-emitting chip mounted on the board, the wavelength converting layer located between an optical plate and an outside surface of the chips so that a density of a peripheral region is lower than that of a middle region, and a reflective material layer disposed at least between the frame and a side surface of the wavelength-converting layer. The device can have the reflective material layer form each reflector and can use a wavelength converting layer having different densities, and therefore can emit a wavelength-converted light having a high light-emitting efficiency and a uniform color tone from various small light-emitting surfaces.
摘要:
A semiconductor light-emitting device and a method for manufacturing the same can include a wavelength converting layer encapsulating at least one semiconductor light-emitting chip to emit various colored lights including white light. The semiconductor light-emitting device can include a base board with the chip mounted thereon, a frame located on the base board, a transparent plate located on the wavelength converting layer, a reflective material layer disposed between the frame and both side surfaces of the wavelength converting layer and the transparent plate, and a light-absorbing layer located on the reflective material layer. The semiconductor light-emitting device can be configured to improve light-emitting efficiency and a contrast between a light-emitting and non-light-emitting surfaces by using the transparent material and light-absorbing layer. A wavelength-converted light that is emitted can have a high light-emitting efficiency and a high contrast between a light-emitting and non-light-emitting surface from a small light-emitting surface.
摘要:
A semiconductor light-emitting device and a method for manufacturing the same can include a wavelength converting layer encapsulating at least one semiconductor light-emitting chip in order to emit various colored lights including white light. The semiconductor light-emitting device can include a base board, a frame located on the base board, the chip mounted on the base board, the wavelength converting layer formed around the chip, a transparent plate located on the wavelength converting layer and a diffusing reflection member disposed between the frame and both side surfaces of the wavelength converting layer and the transparent plate. The device can be configured to improve the linearity of a boundary between the diffusing reflection member and both side surfaces by using the transparent plate, and therefore can be used for a headlight that can form a favorable horizontal cut-off line corresponding to the boundary via a projector lens without a shade.
摘要:
A method includes forming a light-emission operating layer on a growth substrate; forming a reflection insulating layer on the light-emission operating layer; forming opening portions in the insulating layer; forming a contact portion which has a thickness adapted to flatten the opening portions and has been embedded into the opening portions; forming an electrode layer on the insulating layer and the contact portions; forming a first bonding metal layer on the electrode layer; preparing a supporting substrate in which a second bonding metal layer has been formed; and making the first and second bonding metal layers molten and joined.
摘要:
A first Sn absorption layer is formed on a principal surface of a first substrate, the first Sn absorption layer being made of metal absorbing Sn from AuSn alloy and lowering a relative proportion of Sn in the AuSn alloy. A second Sn absorption layer is formed on a principal surface of a second substrate, the second Sn absorption layer being made of metal absorbing Sn from AuSn alloy and lowering a relative proportion of Sn in the AuSn alloy. A solder layer made of AuSn alloy is formed at least on one Sn absorption layer of the first and second Sn absorption layers. The first and second substrates are bonded together by melting the solder layer in a state that the first and second substrates are in contact with each other, with the principal surfaces of the first and second substrates facing each other.
摘要:
(a) A first Sn absorption layer (5) is formed on the principal surface of a first substrate (1), the first Sn absorption layer being made of metal absorbing Sn from AuSn alloy and lowering a relative proportion of Sn in the AuSn alloy. (b) A second Sn absorption layer (17) is formed on the principal surface of a second substrate (11) the second Sn absorption layer being made of metal absorbing Sn from AuSn alloy and lowering a relative proportion of Sn in the AuSn alloy. (c) A solder layer (7) made of AuSn alloy is formed at least on one Sn absorption layer of the first and second Sn absorption layers. (d) The first and second substrates are bonded together by melting the solder layer in a state that the first and second substrates are in contact with each other, with the principal surfaces of the first and second substrates facing each other.