摘要:
A method for the formation of a thin, high melting-point metal film such as W, on a substrate surface, by means of CVD, is disclosed herein. In this method, the inner wall of the CVD reaction tube and the surface of the at least part of the fittings disposed therewithin are covered with a metal nitride film, in the process of performing the CVD operation. The method permits the formation of a high quality film, and also prevents the deposition of the high melting-point metal on the inner wall of the reaction chamber, even if the CVD operation is repeatedly performed over a long period of time.
摘要:
A semiconductor memory device includes a semiconductor substrate having a first region and a second region, a transistor placed in the first region of the semiconductor substrate, a first insulating film formed on the semiconductor substrate in the first and second regions and on the transistor, a first ferroelectric capacitor formed on the first insulating film in the first region and electrically connected to the transistor, a hydrogen barrier film formed above the first ferroelectric capacitor and above the first insulating film in the first and second regions, a first contact penetrating the hydrogen barrier film in the first region and electrically connected to the first ferroelectric capacitor, and a second contact which penetrates the hydrogen barrier film in the second region and which is in a floating state.
摘要:
A semiconductor memory device includes a semiconductor substrate having a first region and a second region, a transistor placed in the first region of the semiconductor substrate, a first insulating film formed on the semiconductor substrate in the first and second regions and on the transistor, a first ferroelectric capacitor formed on the first insulating film in the first region and electrically connected to the transistor, a hydrogen barrier film formed above the first ferroelectric capacitor and above the first insulating film in the first and second regions, a first contact penetrating the hydrogen barrier film in the first region and electrically connected to the first ferroelectric capacitor, and a second contact which penetrates the hydrogen barrier film in the second region and which is in a floating state.
摘要:
A semiconductor memory device includes a semiconductor substrate having a first region and a second region, a transistor placed in the first region of the semiconductor substrate, a first insulating film formed on the semiconductor substrate in the first and second regions and on the transistor, a first ferroelectric capacitor formed on the first insulating film in the first region and electrically connected to the transistor, a hydrogen barrier film formed above the first ferroelectric capacitor and above the first insulating film in the first and second regions, a first contact penetrating the hydrogen barrier film in the first region and electrically connected to the first ferroelectric capacitor, and a second contact which penetrates the hydrogen barrier film in the second region and which is in a floating state.
摘要:
A semiconductor memory device includes a semiconductor substrate having a first region and a second region, a transistor placed in the first region of the semiconductor substrate, a first insulating film formed on the semiconductor substrate in the first and second regions and on the transistor, a first ferroelectric capacitor formed on the first insulating film in the first region and electrically connected to the transistor, a hydrogen barrier film formed above the first ferroelectric capacitor and above the first insulating film in the first and second regions, a first contact penetrating the hydrogen barrier film in the first region and electrically connected to the first ferroelectric capacitor, and a second contact which penetrates the hydrogen barrier film in the second region and which is in a floating state.
摘要:
There is provided a semiconductor storage device comprising a ferroelectric capacitor superior in barrier capability against penetration of hydrogen from all directions including a transverse direction. The device comprises a transistor formed on a semiconductor substrate, the ferroelectric capacitor formed above the transistor and including a lower electrode, a ferroelectric film, and an upper electrode, a first hydrogen barrier film which continuously surrounds side portions of a ferroelectric capacitor cell array constituted of a plurality of ferroelectric capacitors, and a second hydrogen barrier film which is formed above the ferroelectric capacitor cell array and which is brought into contact with the first hydrogen barrier film in the whole periphery.
摘要:
A method of manufacturing a ferroelectric memory cell includes: forming device isolation regions; and source/drain regions; forming a gate insulating film on the semiconductor substrate; forming a gate electrode on the gate insulating film; forming; forming a contact plug to be connected to one of the source/drain regions. The method further includes: forming a lower electrode to be connected to the contact plug; depositing a sol-gel solution containing a ferroelectric minute crystal on the lower electrode to form a ferroelectric film; forming an upper electrode on the ferroelectric film; forming a second interlayer insulating film. The method further includes: forming a capacitor contact plug to be connected to the upper electrode; forming a substrate contact plug to be connected to the other one of the source/drain regions; and forming first and second wiring layers to be connected to the capacitor contact plug and the substrate contact plug, respectively.
摘要:
A method of manufacturing a semiconductor apparatus comprises the steps of forming, on a surface of a semiconductor substrate, an MIS transistor including a drain region and a source region each formed of an impurity diffusion region, forming an insulation film on the semiconductor substrate after the MIS transistor has been formed, selectively forming contact holes in the insulation film, embedding, into the contact hole, a capacitor contact plug having a lower end which is in contact with one of the drain region and the source region of the MIS transistor, forming a ferroelectric capacitor having a lower electrode, a ferroelectric film and an upper electrode on the insulation film after the capacitor contact plug has been formed, and forming an electric wire for establishing a connection between the upper electrode of the ferroelectric capacitor and an upper surface of the capacitor contact plug.
摘要:
A semiconductor device comprises a semiconductor substrate of a first conductivity type. An insulative film and metal films are sequentially formed on the main top surface of the semiconductor substrate. Impurity diffusion layers of a second conductivity type are selectively formed on the main top surface of the semiconductor substrate. The semiconductor device further comprises metal compound layers consisting of constituting elements of the semiconductor substrate and a metal element. The metal compound layers are formed in the impurity diffusion layers in such a manner that they do not contact the insulative film, and the metal compound layers on the main back surface side of the semiconductor substrate have faces formed in parallel to the top surface of the semiconductor substrate. The method also includes cooling the top of the substrate to form a temperature gradient that results in increased dopant concentration at the bottom of a silicide layer.
摘要:
According to an aspect of the present invention, there is provided a non-volatile semiconductor memory device, including a ferroelectric capacitor being stacked a first electrode, a ferroelectric film and a second electrode in order, a first protective film with hydrogen barrier performance, the first protective film being formed under the first electrode and on a side-wall of the ferroelectric capacitor, the first protective film being widened from the second electrode towards the first electrode, a second protective film with hydrogen barrier performance, the second protective film being formed over the second electrode and on the first protective film formed on the side-wall of the ferroelectric capacitor, the second protective film being widened from the first electrode towards the second electrode, a cell transistor, a source of the cell transistor being connected to the first electrode, a drain of the cell transistor being connected to a bit line and a gate being connected to a word line.