摘要:
Spring structures are subjected to pre-release and post-release annealing to tune their tip height to match a specified target. Post-release annealing increases tip height, and pre-release annealing decreases tip height. The amount of tuning is related to the annealing temperature and/or time. Annealing schedules are determined for a pre-fabricated cache of unreleased spring structures such that finished spring structures having a variety of target heights can be economically produced by releasing/annealing the cache according to associated annealing schedules. Selective annealing is performed using lasers and heat absorbing/reflecting materials. Localized annealing is used to generate various spring structure shapes. Both stress-engineered and strain-engineered spring structures are tuned by annealing.
摘要:
A structure has at least one structure component formed of a first material residing on a substrate, such that the structure is out of a plane of the substrate. A first coating of a second material then coats the structure. A second coating of a non-oxidizing material coats the structure at a thickness less than a thickness of the second material.
摘要:
Lithographically defined and etched spring structures are produced by various methods such that they avoid the formation of a plated metal wedge on an underside of the spring structure after release. A post is utilized to offset the spring from an underlying substrate by a distance greater than the thickness of the plated metal. A trench is etched into the substrate below the spring to provide clearance during deflection of the spring. Another spring includes a knee (bend) that provides the necessary clearance during deflection. A plating process is limited to the upper side of another spring. A released spring is used as a shadow mask for patterning resist that prevents wedge formation during plating. Various tip arrangements are disclosed that can be utilized with each spring structure
摘要:
An out-of-plane micro-structure which can be used for on-chip integration of high-Q inductors and transformers places the magnetic field direction parallel to the substrate plane without requiring high aspect ratio processing. The photolithographically patterned coil structure includes an elastic member having an intrinsic stress profile. The intrinsic stress profile biases a free portion away from the substrate forming a loop winding. An anchor portion remains fixed to the substrate. The free portion end becomes a second anchor portion which may be connected to the substrate via soldering or plating. A series of individual coil structures can be joined via their anchor portions to form inductors and transformers.
摘要:
A printing plate has a substrate, an array of cells on the substrate, wherein each cell corresponds to an element of a print image, a deformable polymer material localized into the cells such that each cell is at least partially formed from the deformable polymer material, a reservoir corresponding to each cell to collect the deformable polymer material as needed when the deformable polymer material is one of either melted or softened, and a heater to cause the deformable polymer material to either melt or soften. A method of forming a printing plate provides an array of cells, first heats the array of cells such that the deformable polymer material does one of either melts or softens, actuates the cells in the array to assume a deformed state, cools the array of cells to solidify the cells in the deformed state, second heats the cells such that the deformable polymer material in selected ones of the cells does one of either soften or melt and return to a less deformed state to form a printing pattern, and cools the surface to solidify the deformable polymer material in the printing pattern. A method of forming a printing plate provides an array of cells, heats the array of cells such that the deformable polymer material softens, actuates selected ones of the cells to deform surfaces of the selected ones to form a printing pattern, and cools the array of cells to solidify the printing pattern into a printing plate.
摘要:
A curved transmission-line spring structure formed by self-bending materials (e.g., stress-engineered materials, intermetallic compounds and/or bimorphs) that are layered to form a stripline or microstrip transmission line. A dielectric layer is sandwiched between two conductive layers, which form the signal and ground lines of the structure. The various layers are etched to form an elongated spring structure, and then one end of the spring structure is released from the underlying substrate, causing the tip of the released end to bend away from the substrate for contact with a second device. One or both of the conductive layers is fabricated using self-bending spring metals to facilitate the bending process, and plated metal is utilized for conductivity. Alternatively, or in addition, the dielectric layer is formed using a stress-engineered dielectric material. Two-tip and three-tip structures are used to facilitate connection of both the ground and signal lines.
摘要:
An electrical interconnect structure that includes a spring portion that extends out of a plane. The electrical interconnect including curved regions to improve the lateral compliance of the interconnect. The curved region may be incorporated into a release region of the spring. The release region may include either or both an uplifted region and a planar region. The curves in the release region are arranged to improve the spring contact with a mating surface and also improve lateral compliance compared to prior art spring designs.
摘要:
A method and structure for forming a spring structure that avoids undesirable kinks in the spring is described. The method converts a portion of a release layer such that the converted portion resists etching. The converted portion then serves as an anchor region for a spring structure deposited over the release layer. When the non-converted portions of the release layer are etched, the spring curls out of the plane of a plane.
摘要:
A method and structure for forming a spring structure that avoids undesirable kinks in the spring is described. The method converts a portion of a release layer such that the converted portion resists etching. The converted portion then serves as an anchor region for a spring structure deposited over the release layer. When the non-converted portions of the release layer are etched, the spring curls out of the plane of a plane.
摘要:
A curved transmission-line spring structure formed by self-bending materials (e.g., stress-engineered materials, intermetallic compounds and/or bimorphs) that are layered to form a stripline or microstrip transmission line. A dielectric layer is sandwiched between two conductive layers, which form the signal and ground lines of the structure. The various layers are etched to form an elongated spring structure, and then one end of the spring structure is released from the underlying substrate, causing the tip of the released end to bend away from the substrate for contact with a second device. One or both of the conductive layers is fabricated using self-bending spring metals to facilitate the bending process, and plated metal is utilized for conductivity. Alternatively, or in addition, the dielectric layer is formed using a stress-engineered dielectric material. Two-tip and three-tip structures are used to facilitate connection of both the ground and signal lines.