摘要:
Graphics information is efficiently transferred from a host computer to a graphics subsystem in which rendering and pixel data is generated by the host system. A masked span operation provides an assist for 3D rendering performed by the system processor of the host and other system resources. Storage of depth, alpha, stencil, and other pixel data is in system memory including one or more ancillary graphics buffers. The main processor of the host system generates pixel data associated with an image. This data is checked against the buffers. As a result of such checking, a mask is generated by the host system. The mask is transferred in burst mode across the host-graphic subsystem PCI bus to the graphics subsystem in combination with span width, and in the case of interpolated color, color base and color increment data, and X,Y coordinate of the first pixel. In the graphics subsystem the mask is employed with the other data to load the frame buffer with the portion of pixel data defined by the mask.
摘要:
Primitives are divided into span groups of 2N spans, and then processed in M×N blocks of pixels, with the pixel blocks preferably being as close to square as possible and therefore optimized for small spans and texture mapping. Each span group is rendered block-by-block in a serpentine manner from an initial or entry block, first in a direction away from the long edge of the primitive and then in a direction towards the long edge. The interpolators include a one-deep stack onto which pixel and texel information for the initial or entry block are pushed before rendering any other blocks within the span group. Blocks or pairs of blocks within different span subgroups of the span group are then alternately rendered, such that rendering zig-zags between the span subgroups as it proceeds to the end of the span group. Once the first end of a span group is reached, the values for the initial or entry block are popped from the stack and rendering resumes from the initial or entry block in the opposite direction, but in the same serpentine or zig-zag manner, until the other end of the span group is reached. The next span group, if any, is rendered starting with a block adjacent to the last block rendered in the previous span group. Memory bandwidth utilization between the pixel and texel cache and the frame buffer is thus improved, together with texel reuse during texture mapping, to reduce the total number of pixel and texel fetches required to render the primitive.
摘要:
A graphics adapter having a processor for processing pixel data is provided. The processor transfers the processed data to the graphics memory in sets of slices of pixel data where each transfer provides several slices, each slice being from a unique pixel. In an alternative embodiment, the storage of the processed data is accomplished within a plurality of memory banks, each of the memory banks being used to store slices of consecutive pixels. The invention further provides for concurrently displaying images having different color depths. This is achieved by a method of organizing data of different pixel depths such that they can be interpreted correctly. Furthermore, the invention provides for double buffering the processed data to get a smooth transition from one image to another.
摘要:
A method and apparatus for moving pixel data from one area of a frame buffer to another in block fashion are provided. In one embodiment of the invention, pixel data is decomposed into its RGB component and each RGB component is stored into the frame buffer in a particular memory bank. The pixel data is moved by moving all the components of the data stored in a memory bank before moving the components in other memory banks.
摘要:
Disclosed is an apparatus which operates to substantially evenly distribute commands and/or data packets issued from a managed program or other entity over a given time period. The even distribution of these commands or data packets minimizes congestion in critical resources such as memory, I/O devices and/or the bus for transferring the data between source and destination. Any unmanaged commands or data packets are treated as in conventional technology.
摘要:
A mechanism provides for sending an envelope and replying to an envelope. A transmitter is configured to send an envelope. A receiver is coupled to the transmitter, wherein the receiver is configured to receive the envelope and generate a reply envelope. A send buffer is coupled to the transmitter. A receive buffer is coupled to the receiver. A retry timer is coupled to the transmitter, wherein the retry timer is configured to reset upon the receipt of a reply envelope correlated to the transmit envelope. The transmitter is configured to retransmit an envelope if the transmitter does not receive a corresponding reply envelope within a selected time period as determined by the retry timer. This leads to a decrease in the total number of envelopes, transmitted from both the transmitter and the receiver.
摘要:
Methods and apparatus provide for interconnecting one or more multiprocessors and one or more external devices through one or more configurable interface circuits, which are adapted for operation in: (i) a first mode to provide a coherent symmetric interface; or (ii) a second mode to provide a non-coherent interface.
摘要:
The present invention provides a method and apparatus for creating memory barriers in a Direct Memory Access (DMA) device. A memory barrier command is received and a memory command is received. The memory command is executed based on the memory barrier command. A bus operation is initiated based on the memory barrier command. A bus operation acknowledgment is received based on the bus operation. The memory barrier command is executed based on the bus operation acknowledgment. In a particular aspect, memory barrier commands are direct memory access sync (dmasync) and direct memory access enforce in-order execution of input/output (dmaeieio) commands.
摘要:
A component of a microprocessor-based data processing system, which includes features for regulating power consumption in snoopable components and has gating off memory coherency properties, is determined to be in a relatively inactive state and is transitioned to a non-snoopable low power mode. Then, when a snoop request occurs, a retry protocol is sent in response to the snoop request. In conjunction with the retry protocol, a signal is sent to bring the component into snoopable mode. When the retry snoop is requested, the component is in full power mode and can properly respond to the snoop request. After the snoop request has been satisfied, the component again enters into a low power mode. Therefore, the component is able to enter into a low power mode in between snoops
摘要:
A method for maintaining cache coherency for a multi-node system using a specialized bridge which allows for fewer forward progress dependencies. A look-up of a local node directory is performed if a request received at a multi-node bridge of the local node is a system request. If a directory entry indicates that data specified in the request has a local owner or local destination, the request is forwarded to the local node. If the local node determines that the request is a local request, a look-up of the local node directory is performed. If the directory entry indicates that data specified in the request has a local owner and local destination, the coherency of the data on the local node is resolved and a transfer of the request data is performed if required. Otherwise, the request is forwarded to all remote nodes in the multi-node system.