Abstract:
A substrate processing apparatus according to the present disclosure includes first and second nozzles that eject a processing liquid to a substrate; a moving mechanism that moves the first and second nozzles; and a nozzle cleaning device that cleans at least the second nozzle. The nozzle cleaning device includes a cleaning bath and an overflow bath. The cleaning bath includes a liquid storage portion that stores a cleaning liquid for cleaning the second nozzle, and an overflow portion that discharges the cleaning liquid exceeding a predetermined level from the liquid storage portion. The overflow bath is disposed adjacent to the cleaning bath and receives the cleaning liquid discharged from the overflow portion and discharge the received cleaning liquid to the outside.
Abstract:
A substrate processing apparatus includes a substrate holding unit 31 configured to hold a substrate W; an outer nozzle 45 configured to discharge a processing liquid toward a surface of the substrate from a position at an outside of an outer edge of the substrate held by the substrate holding unit such that at least a central portion of the surface of the substrate is covered with a liquid film of the discharged processing liquid; and an actuator 46 (90) configured to change a height position or a discharge angle of the outer nozzle.
Abstract:
A substrate processing apparatus includes: a processing unit including a holder that holds a substrate and rotates the substrate, a nozzle that ejects a processing liquid, and a conductive piping unit that supplies the processing liquid to the nozzle; a controller that causes the processing unit to execute a liquid processing in which the substrate is processed by supplying the processing liquid from the nozzle to the substrate that is held and rotated by the holder, and a measuring unit that measures a flowing current generated by the processing liquid flowing through the piping unit. The controller monitors the liquid processing based on a measurement result by the measuring unit.
Abstract:
A nozzle cleaning device is capable of uniformly cleaning a nozzle from a front end of the nozzle to an upper part thereof. The nozzle cleaning device includes a storage tank, a liquid discharging portion and an overflow discharging portion. The storage tank has a cylindrical inner peripheral surface and is configured to store therein a cleaning liquid that cleans a nozzle used in a substrate process. The liquid discharging portion is configured to discharge the cleaning liquid into the storage tank toward a position eccentric with respect to a central axis of the cylindrical inner peripheral surface to store the cleaning liquid within the storage tank and configured to form a vortex flow of the cleaning liquid revolving within the storage tank. The overflow discharging portion is configured to discharge the cleaning liquid that overflows the storage tank.
Abstract:
Disclosed is a substrate liquid processing apparatus. The apparatus includes: a substrate holding unit configured to hold a substrate horizontally; a nozzle configured to eject a processing liquid in a transversal direction toward a liquid arrival target position set on the substrate held by the substrate holding unit from an ejection port which is located at an injection position spaced away from the liquid arrival target position by a predetermined distance horizontally; and a liquid receiving unit provided below the nozzle to receive the processing liquid dropping from the ejection port of the nozzle.
Abstract:
Disclosed are a liquid processing apparatus and a cleaning method which may perform cleaning on a portion which is not in the vicinity of a drain section in an exhaust route. The liquid processing apparatus includes an exhaust section provided in vicinity of the drain section, which is configured to exhaust a surrounding atmosphere of the substrate held by the substrate holding unit; an exhaust route forming member configured to form an exhaust route reaching the exhaust section; and a first cleaning unit configured to supply a cleaning liquid to the exhaust route forming member at the exhaust route side.
Abstract:
Disclosed is a substrate liquid processing apparatus. The apparatus includes: a substrate holding unit configured to hold a substrate horizontally; a nozzle configured to eject a processing liquid in a transversal direction toward a liquid arrival target position set on the substrate held by the substrate holding unit from an ejection port which is located at an injection position spaced away from the liquid arrival target position by a predetermined distance horizontally; and a liquid receiving unit provided below the nozzle to receive the processing liquid dropping from the ejection port of the nozzle.
Abstract:
A nozzle cleaning device is capable of uniformly cleaning a nozzle from a front end of the nozzle to an upper part thereof. The nozzle cleaning device includes a storage tank, a liquid discharging portion and an overflow discharging portion. The storage tank has a cylindrical inner peripheral surface and is configured to store therein a cleaning liquid that cleans a nozzle used in a substrate process. The liquid discharging portion is configured to discharge the cleaning liquid into the storage tank toward a position eccentric with respect to a central axis of the cylindrical inner peripheral surface to store the cleaning liquid within the storage tank and configured to form a vortex flow of the cleaning liquid revolving within the storage tank. The overflow discharging portion is configured to discharge the cleaning liquid that overflows the storage tank.
Abstract:
A substrate processing apparatus comprises a processing tub and a fluid supply. In the processing tub, a processing is performed on multiple substrates by immersing the multiple substrates in a processing liquid. The fluid supply is disposed under the multiple substrates within the processing tub and configured to discharge a fluid to generate a liquid flow of the processing liquid within the processing tub. Further, the fluid supply includes multiple discharge paths configured to discharge the fluid to different regions in an arrangement direction of the multiple substrates.
Abstract:
A substrate processing apparatus includes a substrate holding unit 31 configured to hold a substrate W; an outer nozzle 45 configured to discharge a processing liquid toward a surface of the substrate from a position at an outside of an outer edge of the substrate held by the substrate holding unit such that at least a central portion of the surface of the substrate is covered with a liquid film of the discharged processing liquid; and an actuator 46 (90) configured to change a height position or a discharge angle of the outer nozzle.