摘要:
A method of generating an exposure pattern for lithography to create a plurality of patterns arranged in a predetermined direction, comprises a step of counting the plurality of patterns along this predetermined direction, and generating a first enlarged pattern by moving the edges to a first direction along the predetermined direction for a pattern with an odd number, and by moving the edges to a second direction, which is opposite to the first direction, for a pattern with an even number, and a step of generating a second enlarged pattern by moving the edges to the second direction for the pattern with an odd number, and by moving the edges to the first direction for the pattern with an even number. And the first and second patterns are used for creating the plurality of original patterns in a lithography step using the respective enlarged patterns.
摘要:
A method of producing a multi-petaled cyclamen plant having an increased number of petals, including at least inhibiting the function of a transcription factor involved in morphogenesis of a floral organ of cyclamen.
摘要:
Both P type and N type impurities are implanted from a plurality of directions. The tilt angle &thgr; of the implantation direction against the normal of the main surface of a semiconductor substrate is fixed to 10°, and the deflection angle &phgr; is set to such four directions (X, X+90°, X+180°, and X+270°, where X is an arbitrary angle) that projecting components of a vector indicating the implantation direction are opposed to each other on two lines that cross each other at right angles along the main surface of the semiconductor substrate. Thereby, the dependency of the breakdown voltage of element isolation on the direction of a well boundary is suppressed to realize a high breakdown voltage of element isolation in all directions.
摘要:
After formation a gate electrode and source/drain regions, N ions or O ions are implanted into a predetermined region using a resist mask, and a Ti layer is deposited on the entire face of a substrate, and then the Ti layer is silicided in self-alignment by a heat treatment, whereby a high resistivity TixNySiz mixing layer is formed the predetermined region on the gate electrode and the source/drain regions 10, and a low resistivity TiSi.sub.2 layer 12 is formed on another region.
摘要:
A method of producing a multi-petaled cyclamen plant having an increased number of petals, including at least inhibiting the function of a transcription factor involved in morphogenesis of a floral organ of cyclamen.
摘要:
A semiconductor device that permits effective use of a region positioned under a positional detection mark or an external electrode, i.e., the region that has not been conventionally utilized may be provided. In a semiconductor device including a lower layer, a shielding film and an upper layer, the lower layer includes at least one selected from the group consisting of a positional detection mark, a quality testing element, and a circuit element. The shielding film is formed on the lower layer and shields an energy beam used for detecting a positional detection mark. The upper layer includes a positional detection mark formed on the shielding film.
摘要:
A semiconductor device having a memory cell region comprising a plurality of memory cells is described, and a stable characteristic is imparted to all the memory cells provided in the memory cell block. Impurities are implanted into a memory cell region of a silicon substrate at predetermined intervals, thus forming a plurality of wells. A resist film used as a mask for implanting impurities has strip-shaped patterns and a broad pattern. Since the strip-shaped patterns located close to the broad pattern are inclined, the characteristics of the wells located in the vicinity of the outer periphery of the memory cell region become unstable. The wells having unstable characteristics are taken as dummy wells which do not affect the function of a semiconductor device.
摘要:
There is provided a technology which allows improvements in manufacturing yield and product reliability in a semiconductor device having a triple well structure. A shallow p-type well is formed in a region different from respective regions in a p-type substrate where a deep n-type well, a shallow p-type well, and a shallow n-type well are formed. A p-type diffusion tap formed in the shallow p-type well is wired to a p-type diffusion tap formed in a shallow n-type well in the deep n-type well using an interconnection in a second layer. The respective gate electrodes of an nMIS and a pMIS each formed in the deep n-type well are coupled to the respective drain electrodes of an nMIS and a pMIS each formed in the substrate using an interconnection in a second or higher order layer.
摘要:
There is provided a technology which allows improvements in manufacturing yield and product reliability in a semiconductor device having a triple well structure. A shallow p-type well is formed in a region different from respective regions in a p-type substrate where a deep n-type well, a shallow p-type well, and a shallow n-type well are formed. A p-type diffusion tap formed in the shallow p-type well is wired to a p-type diffusion tap formed in a shallow n-type well in the deep n-type well using an interconnection in a second layer. The respective gate electrodes of an nMIS and a pMIS each formed in the deep n-type well are coupled to the respective drain electrodes of an nMIS and a pMIS each formed in the substrate using an interconnection in a second or higher order layer.
摘要:
There is described a method of manufacturing a semiconductor device of dual-gate construction, which method prevents occurrence of a highly-resistant local area in a gate electrode of dual-gate construction. A polysilicon layer which is to become a conductive layer of a gate electrode of dual-gate construction is formed on an isolation oxide film. N-type impurities are implanted into an n-type implantation region of the polysilicon film while a photoresist film is taken as a mask. P-type impurities are implanted into a p-type impurity region of the polysilicon film 3 while another photoresist film is taken as a mask. Implantation of n-type impurities and implantation of p-type impurities are performed such that an overlapping area to be doped with these impurities in an overlapping manner is inevitably formed.