摘要:
In one embodiment, a method is disclosed for manufacturing a semiconductor light emitting device. The device includes a crystal layer including a nitride semiconductor. The crystal layer contains In and Ga atoms. The method can include forming the crystal layer by supplying a source gas including a first molecule including Ga atoms and a second molecule including In atoms onto a base body. The crystal layer has a ratio xs of a number of the In atoms to a total of the In atoms and the Ga atoms being not less than 0.2 and not more than 0.4. A vapor phase supply ratio xv of In is a ratio of a second partial pressure to a total of first and second partial pressures. The first and second partial pressures are pressure of the first and second molecules and degradation species of the first and second molecules on the source gas, respectively. (1−1/xv)/(1−1/xs) is less than 0.1.
摘要:
According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type, and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer and configured to emit a light having a peak wavelength of 440 nanometers or more. Tensile strain is applied to the first semiconductor layer. An edge dislocation density of the first semiconductor layer is 5×109/cm2 or less. A lattice mismatch factor between the first semiconductor layer and the light emitting layer is 0.11 percent or less.
摘要翻译:根据一个实施例,半导体发光器件包括第一导电类型的第一半导体层,第二导电类型的第二半导体层和设置在第一半导体层和第二半导体层之间的发光层, 发出峰值波长为440纳米以上的光。 对第一半导体层施加拉伸应变。 第一半导体层的边缘位错密度为5×10 9 / cm 2以下。 第一半导体层和发光层之间的晶格失配因子为0.11%以下。
摘要:
According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type, and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer and configured to emit a light having a peak wavelength of 440 nanometers or more. Tensile strain is applied to the first semiconductor layer. An edge dislocation density of the first semiconductor layer is 5×109/cm2 or less. A lattice mismatch factor between the first semiconductor layer and the light emitting layer is 0.11 percent or less.
摘要翻译:根据一个实施例,半导体发光器件包括第一导电类型的第一半导体层,第二导电类型的第二半导体层和设置在第一半导体层和第二半导体层之间的发光层, 发出峰值波长为440纳米以上的光。 对第一半导体层施加拉伸应变。 第一半导体层的边缘位错密度为5×10 9 / cm 2以下。 第一半导体层和发光层之间的晶格失配因子为0.11%以下。
摘要:
According to one embodiment, a semiconductor light emitting device includes an n-type semiconductor layer, a p-type semiconductor layer and a light emitting part. The light emitting part is provided between the n-type semiconductor layer and the p-type semiconductor layer and includes a first light emitting layer. The first light emitting layer includes a first barrier layer, a first well layer, a first n-side intermediate layer and a first p-side intermediate layer. The barrier layer, the well layer, the n-side layer and the p-side intermediate layer include a nitride semiconductor. An In composition ratio in the n-side layer decreases along a first direction from the n-type layer toward the p-type layer. An In composition ratio in the p-side layer decreases along the first direction. An average change rate of the In ratio in the p-side layer is lower than an average change rate of the In ratio in the n-side layer.
摘要:
According to one embodiment, a semiconductor light emitting device includes an n-type semiconductor layer, a p-type semiconductor layer and a light emitting part. The light emitting part is provided between the n-type semiconductor layer and the p-type semiconductor layer and includes a first light emitting layer. The first light emitting layer includes a first barrier layer, a first well layer, a first n-side intermediate layer and a first p-side intermediate layer. The barrier layer, the well layer, the n-side layer and the p-side intermediate layer include a nitride semiconductor. An In composition ratio in the n-side layer decreases along a first direction from the n-type layer toward the p-type layer. An In composition ratio in the p-side layer decreases along the first direction. An average change rate of the In ratio in the p-side layer is lower than an average change rate of the In ratio in the n-side layer.
摘要:
According to one embodiment, a method is disclosed for manufacturing a nitride semiconductor device. The method can include removing a growth substrate from a structure body by using a first treatment material. The structure body has the growth substrate, a buffer layer formed on the growth substrate, and the nitride semiconductor layer formed on the buffer layer. A support substrate is bonded to the nitride semiconductor layer. The method can include reducing thicknesses of the buffer layer and the nitride semiconductor layer by using a second treatment material different from the first treatment material after removing the growth substrate.
摘要:
According to one embodiment, an optical semiconductor device includes an n-type semiconductor layer, a p-type semiconductor layer, and a functional part. The functional part is provided between the n-type semiconductor layer and the p-type semiconductor layers. The functional part includes a plurality of active layers stacked in a direction from the n-type semiconductor layer toward the p-type semiconductor layer. At least two of the active layers include a multilayer stacked body, an n-side barrier layer, a well layer and a p-side barrier layer. The multilayer stacked body includes a plurality of thick film layers and a plurality of thin film layers alternately stacked in the direction. The n-side barrier layer is provided between the multilayer stacked body and the p-type layer. The well layer is provided between the n-side barrier layer and the p-type layer. The p-side barrier layer is provided between the well layer and the p-type layer.
摘要:
According to one embodiment, an optical semiconductor device includes an n-type semiconductor layer, a p-type semiconductor layer, and a functional part. The functional part is provided between the n-type semiconductor layer and the p-type semiconductor layers. The functional part includes a plurality of active layers stacked in a direction from the n-type semiconductor layer toward the p-type semiconductor layer. At least two of the active layers include a multilayer stacked body, an n-side barrier layer, a well layer and a p-side barrier layer. The multilayer stacked body includes a plurality of thick film layers and a plurality of thin film layers alternately stacked in the direction. The n-side barrier layer is provided between the multilayer stacked body and the p-type layer. The well layer is provided between the n-side barrier layer and the p-type layer. The p-side barrier layer is provided between the well layer and the p-type layer.
摘要:
According to one embodiment, a semiconductor light emitting device includes an n-type layer, a light emitting layer, a p-type layer, and a transparent electrode. The n-type layer includes a nitride semiconductor and has a thickness not more than 500 nm. The light emitting layer is provided on the n-type layer. The p-type layer is provided on the light emitting layer and includes a nitride semiconductor. The transparent electrode contacts the n-type layer. The n-type layer is disposed between the transparent electrode and the light emitting layer.
摘要:
A nitride semiconductor wafer includes a silicon substrate, a stacked multilayer unit, a silicon-containing unit, and an upper layer unit. The silicon substrate has a major surface. The stacked multilayer unit is provided on the major surface. The stacked multilayer unit includes N number of buffer layers. The buffer layers include an i-th buffer layer, and an (i+1)-th buffer layer provided on the i-th buffer layer. The i-th buffer layer has an i-th lattice length Wi in a first direction parallel to the major surface. The (i+1)-th buffer layer has an (i+1)-th lattice length W(i+1) in the first direction. A relation that (W(i+1)−Wi)/Wi≦0.008 is satisfied for all the buffer layers. The silicon-containing unit is provided on the stacked multilayer unit. The upper layer unit is provided on the silicon-containing unit.