Abstract:
The present invention provides novel compounds which inhibit cancer-associated transporter proteins, methods of treating or preventing the onset of a cancer-associated transporter protein-mediated disease by administering such compounds, and pharmaceutical compositions comprising such compounds. In one embodiment, the invention provides novel pyrazolo[1,5-a]pyrimidine efflux inhibitors that are selective toward ABCG2 over ABCB1.
Abstract:
The present invention provides novel compounds which inhibit cancer-associated transporter proteins, methods of treating or preventing the onset of a cancer-associated transporter protein-mediated disease by administering such compounds, and pharmaceutical compositions comprising such compounds. In one embodiment, the invention provides novel pyrazolo[1,5-a]pyrimidine efflux inhibitors that are selective toward ABCG2 over ABCB1.
Abstract:
The present invention provides pyrazolo[1,5-a]pyrimidine compounds which inhibit cancer-associated transporter proteins, methods of treating or preventing the onset of a cancer-associated transporter protein-mediated disease by administering such compounds, and pharmaceutical compositions comprising such compounds. In one embodiment, the invention provides pyrazolo[1,5-a]pyrimidine efflux inhibitors that are selective toward ABCG2 over ABCB1. Compounds and compositions according to the present invention may be used to treat cancer, including drug resistant (DR) and multiple drug resistant (MDR) cancers.
Abstract:
This invention relates to novel cancer treatment compositions and associated therapeutic methods. More particularly, this invention relates in part to small chemical bifunctional inhibitors of DNA replication and repair proteins Metnase and/or Intnase (also termed Gypsy Integrase, Gypsy Integrease-1, Gypsy Retransposon Integrase 1, or GIN-1) that simultaneously damage DNA, and to a therapeutic method that utilizes the inhibitors to increase the effectiveness of cancer treatment protocols, including radiation therapy.In preferred embodiments, compounds, compositions and methods of treatment of the invention are used to treat a patient suffering from leukemia (e.g. acute myeloid leukemia (AML) and related cancers. In certain aspects of such treatments, compounds, compositions and methods of treatment of the invention are administered as a monotherapy (in some cases, to patients who have exhibited resistance to Topo IIalpha inhibitors such as VP-16), or are co-administered with a Topo IIalpha inhibitor or other anti-cancer agents as otherwise described herein or in combination with radiation therapy.
Abstract:
The present disclosure relates to molecules that function as selective modulators (i.e., inhibitors and agonists) of the Ras-homologous (Rho) family of small GTPases and, in particular, CDC42 GTPase, and their use to treat bacterial infection including systemic infection from sources such as Staphylococcus aureus and Streptococcus pyogenes.
Abstract:
The invention provides methods of treating autophagy mediated diseases and disorders and related pharmaceutical compositions, diagnostics, screening techniques and kits. In one embodiment, the invention provides a method of determining whether a subject suffers from, or is at risk of developing, and autophagy mediated disease state and/or condition by evaluating LC3 levels.
Abstract:
The present invention provides novel methods and assays for high-throughput screening of combinatorial libraries to identify FPR1 and/or FPR2 ligands (e.g., agonists and/or antagonists), preferably FPR1 agonists and/or FPR2 antagonists, by positional scanning deconvolution.The invention also provides novel FPR1 and FPR2 ligands (e.g, agonists and antagonists), related pharmaceutical compositions and methods of treating FPR1 and FPR2-related disorders.
Abstract:
The present disclosure relates to molecules that function as selective modulators (i.e., inhibitors and agonists) of the Ras-homologous (Rho) family of small GTPases and, in particular, CDC42 GTPase, and their use to treat bacterial infection including systemic infection from sources such as Staphylococcus aureus and Streptococcus pyogenes.
Abstract:
In one embodiment, the invention provides a method of inhibiting cAMP efflux and increasing intracellular cAMP in a subject who suffers from, or who is at risk of developing, a cancer by administering to the subject a therapeutically-effective amount of a cAMP efflux inhibitor. Novel compounds, pharmaceutical compositions, diagnostics and screening methods are also provided.
Abstract:
The present invention, provides a flow cytometry apparatus for the detection of particles from a plurality of samples comprising: means for moving a plurality of samples comprising particles from a plurality of respective source wells into a fluid flow stream; means for introducing a separation gas between each of the plurality of samples in the fluid flow stream; and means for selectively analyzing each of the plurality of samples for the particles. The present invention also provides a flow cytometry method employing such an apparatus.