摘要:
Techniques for providing a multimode ion source are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for ion implantation, the apparatus including an ion source having a hot cathode and a high frequency plasma generator, wherein the ion source has multiple modes of operation.
摘要:
Techniques for providing a multimode ion source are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for ion implantation, the apparatus including an ion source having a hot cathode and a high frequency plasma generator, wherein the ion source has multiple modes of operation.
摘要:
An implantation system includes an ion extraction plate having a set of apertures configured to extract ions from an ion source to form a plurality of beamlets. A magnetic analyzer is configured to provide a magnetic field to deflect ions in the beamlets in a first direction that is generally perpendicular to a principle axis of the beamlets. A mass analysis plate includes a set of apertures wherein first ion species having a first mass/charge ratio are transmitted through the mass analysis plate and second ion species having a second mass/charge ratio are blocked by the mass analysis plate. A workpiece holder is configured to move with respect to the mass analysis plate in a second direction perpendicular to the first direction, wherein a pattern of ions transmitted through the mass analysis plate forms a continuous ion beam current along the first direction at the substrate.
摘要:
A system for producing a mass analyzed ion beam for implanting into a workpiece, includes an extraction plate having a set of apertures having a longitudinal axis of the aperture. The set of apertures are configured to extract ions from an ion source to form a plurality of beamlets. The system also includes an analyzing magnet region configured to provide a magnetic field to deflect ions in the beamlets in a first direction that is generally perpendicular to the longitudinal axis of the apertures. The system further includes a mass analysis plate having a set of apertures configured to transmit first ion species having a first mass/charge ratio and to block second ion species having a second mass/charge ratio and a workpiece holder configured to move with respect to the mass analysis plate along the first direction.
摘要:
Techniques for providing a multimode ion source are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for ion implantation, the apparatus including an ion source having a hot cathode and a high frequency plasma generator, wherein the ion source has multiple modes of operation.
摘要:
Techniques for independently controlling deflection, deceleration, and focus of an ion beam are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for independently controlling deflection, deceleration, and focus of an ion beam. The apparatus may comprise an electrode configuration comprising a set of upper electrodes disposed above an ion beam and a set of lower electrodes disposed below the ion beam. The set of upper electrodes and the set of lower electrodes may be positioned symmetrically about a central ray trajectory of the ion beam. A difference in potentials between the set of upper electrodes and the set of lower electrodes may also be varied along the central ray trajectory to reflect an energy of the ion beam at each point along the central ray trajectory for independently controlling deflection, deceleration, and focus of an ion beam.
摘要:
Techniques for shaping an ion beam are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for shaping an ion beam. The apparatus may comprise an entrance electrode biased at a first voltage potential, wherein an ion beam enters the entrance electrode, an exit electrode biased at a second voltage potential, wherein the ion beam exits the exit electrode, and a first suppression electrode and a second suppression electrode positioned between the entrance electrode and the exit electrode, wherein the first suppression electrode and the second suppression electrode are independently biased to variably focus the ion beam.
摘要:
A system for manipulating an ion beam having a principal axis includes an upper member having a first and a second coil generally disposed in different regions of the upper member and configured to conduct, independently of each other, a first and a second current, respectively. A lower member includes a third and a fourth coil that are generally disposed opposite to respective first and second coils and are configured to conduct, independently of each other, a third and a fourth current, respectively. A lens gap is defined between the upper and lower members, and configured to transmit the ion beam, wherein the first through fourth currents produce a 45 degree quadrupole field that exerts a rotational force on the ion beam about its principal axis.
摘要:
Techniques for independently controlling deflection, deceleration, and focus of an ion beam are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for independently controlling deflection, deceleration, and focus of an ion beam. The apparatus may comprise an electrode configuration comprising a set of upper electrodes disposed above an ion beam and a set of lower electrodes disposed below the ion beam. The set of upper electrodes and the set of lower electrodes may be positioned symmetrically about a central ray trajectory of the ion beam. A difference in potentials between the set of upper electrodes and the set of lower electrodes may also be varied along the central ray trajectory to reflect an energy of the ion beam at each point along the central ray trajectory for independently controlling deflection, deceleration, and focus of an ion beam.
摘要:
A system for manipulating an ion beam having a principal axis includes an upper member having a first and a second coil generally disposed in different regions of the upper member and configured to conduct, independently of each other, a first and a second current, respectively. A lower member includes a third and a fourth coil that are generally disposed opposite to respective first and second coils and are configured to conduct, independently of each other, a third and a fourth current, respectively. A lens gap is defined between the upper and lower members, and configured to transmit the ion beam, wherein the first through fourth currents produce a 45 degree quadrupole field that exerts a rotational force on the ion beam about its principal axis.