摘要:
Methods for selectively depositing a solid material on a substrate having gaps of dimension on the order of about 100 nm or less are disclosed. The methods involve exposing the substrate to a precursor of a solid material, such that the precursor forms liquid regions in at least some of the gaps, followed by exposing the substrate to conditions that evaporate the liquid precursor from regions outside the gaps but maintain at least some of the liquid regions in the gaps. The liquid precursor remaining in the gaps is then converted to solid material, thereby selectively filling the gaps with the material.
摘要:
Provided are methods of filling gaps on a substrate by creating flowable silicon oxide-containing films. The methods involve introducing vapor-phase silicon-containing precursor and oxidant reactants into a reaction chamber containing the substrate under conditions such that a condensed flowable film is formed on the substrate. The flowable film at least partially fills gaps on the substrate. In certain embodiments, the methods involve using a catalyst in the formation of the film. The catalyst may be incorporated into one of the reactants and/or introduced as a separate reactant.
摘要:
Methods of this invention relate to filling gaps on substrates with a solid dielectric material by forming a flowable film in the gap. The flowable film provides consistent, void-free gap fill. The film is then converted to a solid dielectric material. In this manner gaps on the substrate are filled with a solid dielectric material. According to various embodiments, the methods involve reacting a dielectric precursor with an oxidant to form the dielectric material. In certain embodiments, the dielectric precursor condenses and subsequently reacts with the oxidant to form dielectric material. In certain embodiments, vapor phase reactants react to form a condensed flowable film.
摘要:
Methods of this invention relate to filling gaps on substrates with a solid dielectric material by forming a flowable film in the gap. The flowable film provides consistent, void-free gap fill. The film is then converted to a solid dielectric material. In this manner gaps on the substrate are filled with a solid dielectric material. According to various embodiments, the methods involve reacting a dielectric precursor with an oxidant to form the dielectric material. In certain embodiments, the dielectric precursor condenses and subsequently reacts with the oxidant to form dielectric material. In certain embodiments, vapor phase reactants react to form a condensed flowable film.
摘要:
A supercritical process vessel with an interior for holding a supercritical fluid is provided. A wafer support for supporting a wafer within the interior of a supercritical process vessel to expose the wafer to the supercritical fluid is provided. A lamp, which is able to operate at supercritical fluid pressures within the interior of the supercritical process vessel is provided.
摘要:
Methods of this invention relate to filling gaps on substrates with a solid dielectric material by forming a flowable film in the gap. The flowable film provides consistent, void-free gap fill. The film is then converted to a solid dielectric material. In this manner gaps on the substrate are filled with a solid dielectric material. According to various embodiments, the methods involve reacting a dielectric precursor with an oxidant to form the dielectric material. In certain embodiments, the dielectric precursor condenses and subsequently reacts with the oxidant to form dielectric material. In certain embodiments, vapor phase reactants react to form a condensed flowable film.
摘要:
Plasma etch processes incorporating etch chemistries which include hydrogen. In particular, high density plasma chemical vapor deposition-etch-deposition processes incorporating etch chemistries which include hydrogen that can effectively fill high aspect ratio (typically at least 3:1, for example 6:1, and up to 10:1 or higher), narrow width (typically sub 0.13 micron, for example 0.1 micron or less) gaps while reducing or eliminating chamber loading and redeposition and improving wafer-to-wafer uniformity relative to conventional deposition-etch-deposition processes which do not incorporate hydrogen in their etch chemistries.
摘要:
Chemical vapor deposition processes are employed to fill high aspect ratio (typically at least 3:1), narrow width (typically 1.5 microns or less and even sub 0.15 micron) gaps with significantly reduced incidence of voids or weak spots. This deposition process involves the use of hydrogen as a process gas in the reactive mixture of a plasma containing CVD reactor. The process gas also includes dielectric forming precursor molecules such as silicon and oxygen containing molecules.
摘要:
A suspension adhesive comprised of a matrix material and a particulate filler material is useful for bonding, sealing, repairing, and modifying ceramic, glass, and powdered metal components in a light source. A method for making the suspension adhesive includes the selection of a filler material and a volume percentage of the filler material. Additionally, a matrix material is selected and the filler material is dispersed throughout the matrix material. The suspension adhesive is used to bond and seal components to form, for example, an arc tube for a light source.
摘要:
High density plasma chemical vapor deposition and etch back processes fill high aspect ratio gaps without liner erosion or further underlying structure attack. The characteristics of the deposition process are modulated such that the deposition component of the process initially dominates the sputter component of the process. For example, reactive gasses are introduced in a gradient fashion into the HDP reactor and introduction of bias power onto the substrate is delayed and gradually increased or reactor pressure is decreased. In the case of a multi-step etch enhanced gap fill process, the invention may involve gradually modulating deposition and etch components during transitions between process steps. By carefully controlling the transitions between process steps, including the introduction of reactive species into the HDP reactor and the application of source and bias power onto the substrate, structure erosion is prevented.