摘要:
Semiconductor chips are produced from a wafer. The semiconductor chips are separated from one another by etching the wafer all the way through, by a dry etching process, in defined separation zones between the semiconductor chips. Initially, first etching trenches for separating the p-n junctions are etched into the wafer. Then, second etching trenches are etched from the opposite side of the wafer until the individual semiconductor chips are completely separated.
摘要:
A light-emitting and/or light-receiving semiconductor body is produced with one or more semiconductor layers composed of GaAsxP1−x, where 0≦x
摘要翻译:制造具有由GaAs xP 1-x组成的一个或多个半导体层的发光和/或光接收半导体本体,其中0 <= x <1。 在第一蚀刻步骤中首先用蚀刻溶液H 2 SO 4 :H 2 O 2 :H 2 O处理半导体层表面的至少一部分,然后在第二蚀刻步骤中用氢氟酸处理。 蚀刻导致半导体层的表面的处理部分上的表面粗糙度。
摘要:
An optical coupling device and method for manufacturing the same is disclosed wherein a light-emitting semiconductor transmitter chip is secured to a light-detecting semiconductor receiver chip via a transparent insulating layer, a structured spacer layer and a transparent connecting layer. The resultant optocoupler has a high coupling factor and may be reliably manufactured into SMT compatible packages.
摘要:
An opto-electronic component has a carrier element (3) with a connection region (5). Arranged on the carrier element (3) is a semiconductor chip (7). A contact region (10) is mounted on the surface (8) of the semiconductor chip (7) remote from the carrier element (3). The connection region (5) is electrically conductively connected to the contact region (10) by way of an unsupported conductive structure (13). A method for manufacturing an opto-electronic component is described.
摘要:
A semiconductor chip is specified that has a contact layer that is not optimum for many common applications. For example, the contact layer is too thin to tolerate an operating current intended for the semiconductor chip without considerable degradation. Also specified is an optoelectronic component in which the semiconductor chip can be integrated so that the suboptimal quality of the contact layer is compensated for. In the component the semiconductor chip is applied to a carrier body so that the contact layer is arranged on a side of the semiconductor body that is remote from the carrier body. The semiconductor chip and the carrier body are at least partly covered with an electrically isolating layer, and an electrical conductor applied to the isolating layer extends laterally away from the semiconductor body and contacts at least a partial surface of the contact layer. In addition, an advantageous process for producing the component is specified.
摘要:
An optoelectronic component includes a carrier element. At least two elements are arranged in an adjacent fashion on a first side of the carrier element. Each element has at least one optically active region for generating the electromagnetic radiation. The optoelectronic component has an electrically insulating protective layer arranged at least in part on a surface of the at least two adjacent elements which lies opposite the first side. The protective layer, at least in a first region arranged between the at least two adjacent elements, at least predominantly prevents a transmission of the electromagnetic radiation generated by the optically active regions.
摘要:
An optoelectronic semiconductor component includes a connection support with a connection side, at least one optoelectronic semiconductor chip mounted on the connection side and electrically connected to the connection support, an adhesion-promoting intermediate film applied to the connection side and covering the latter at least in selected places, and at least one radiation-transmissive cast body which at least partially surrounds the semiconductor chip, the cast body being connected mechanically to the connection support by the intermediate film.
摘要:
A light-emitting module includes a supporting element, a number of optoelectronic semiconductor components mounted on the supporting element for the generation of electromagnetic radiation, and a metallic connecting layer by means of which the optoelectronic semiconductor components are supplied with operating voltage. An insulation layer is arranged in a region of the optoelectronic semiconductor components between the supporting element and the metallic connecting layer. The metallic connecting layer forms a light shade for the optoelectronic semiconductor components, so that the electromagnetic radiation is only emitted in a specified direction.
摘要:
In a radiation-emitting semiconductor component having a semiconductor body that comprises a radiation-generating active layer, having a central front-side contact on a front side of the semiconductor body and a back-side contact on a back side of the semiconductor body for impressing a current into the semiconductor body containing the active layer, the back-side contact comprises a plurality of contact locations spaced from one another, whereby the size of the contact locations increases with increasing distance from the central front-side contact.
摘要:
An optoelectronic module is provided which comprises a first semiconductor body (2) with a radiation exit side (2a) on which an electrical connection region (21, 22) is arranged. The first semiconductor body (2) is arranged with its side opposite the radiation exit side (2a) on a carrier (1). An insulation material (3) is arranged on the carrier (1) laterally next to the first semiconductor body (2), which material forms a fillet and adjoins the semiconductor body (2) form-fittingly. An insulation layer (4) is arranged at least in places on the first semiconductor body (2) and the insulation material (3), on which layer a planar conductive structure is arranged for planar contacting of the first semiconductor body (2), which conductive structure is electrically conductively connected with the electrical connection region (21, 22). A method of producing such an optoelectronic module is furthermore provided.