摘要:
The present invention relates to improved catalyst compositions, as well as methods of making and using such compositions. In particular, preferred embodiments of the present invention comprise rare earth catalyst supports, catalyst compositions having rare earth supports, and methods of preparing and using the catalysts and supports. Accordingly, the present invention also encompasses an improved method for converting a hydrocarbon containing gas and an oxygen containing gas to a gas mixture comprising hydrogen and carbon monoxide, i.e., syngas, using the rare earth catalyst supports in accordance with the present invention. In addition, the present invention contemplates an improved method for converting hydrocarbon gas to liquid hydrocarbons using the novel syngas catalyst supports and compositions described herein.
摘要:
Embodiments include a method and apparatus for converting a hydrocarbon and oxygen feed stream to a product stream such as syngas, including multiple serially aligned reaction zones and multiple hydrocarbon feeds. The first reaction zone catalyzes the net partial oxidation of the feed hydrocarbon. The subsequent zones catalyze reactions such as the stream or dry reforming of hydrocarbons or the water gas shift reaction, depending on the stream composition in the vicinity of the zone, and the desired product stream composition.
摘要:
The present invention relates to a process for the preparation of synthesis gas (i.e., a mixture of carbon monoxide and hydrogen), typically labeled syngas. More particularly, the present invention relates to a regeneration method for a syngas catalyst. Still more particularly, the present invention relates to the regeneration of syngas catalysts using a re-dispersion technique. One embodiment of the re-dispersion technique involves the treatment of a deactivated syngas catalyst with a re-dispersing gas, preferably a carbon monoxide-containing gas such as syngas. If necessary, the catalyst is then exposed to hydrogen for reduction and further re-dispersion.
摘要:
The present invention relates to improved catalyst compositions, as well as methods of making and using such compositions. Preferred embodiments of the present invention comprise catalyst compositions having high melting point metallic alloys, and methods of preparing and using the catalysts. In particular, the metallic alloys are preferably rhodium alloys. Accordingly, the present invention also encompasses an improved method for converting a hydrocarbon containing gas and an atomic oxygen-containing gas to a gas mixture comprising hydrogen and carbon monoxide, i.e., syngas, using the catalyst compositions in accordance with the present invention. In addition, the present invention contemplates an improved method for converting hydrocarbon gas to liquid hydrocarbons using the novel syngas catalyst compositions described herein.
摘要:
The present invention relates to a process for the preparation of synthesis gas (i.e., a mixture of carbon monoxide and hydrogen), typically labeled syngas. More particularly, the present invention relates to a regeneration method for a syngas catalyst. Still more particularly, the present invention relates to the regeneration of syngas catalysts using a re-dispersion technique. One embodiment of the re-dispersion technique involves the treatment of a deactivated syngas catalyst with a re-dispersing gas, preferably a carbon monoxide-containing gas such as syngas. If necessary, the catalyst is then exposed to hydrogen for reduction and further re-dispersion.
摘要:
The present invention relates to thermally stable supports and catalysts for use in high temperature operation, and methods of preparing such supports and catalysts, which includes adding a rare earth metal to an aluminum-containing precursor prior to calcining. The present invention can be more specifically seen as a support, process and catalyst wherein the thermally stable support comprises two rare earth aluminates of different molar ratios of aluminum to rare earth metal, and optionally, alumina and/or a rare earth oxide. More particularly, the invention relates to the use of noble metal catalysts comprising the thermally stable support for synthesis gas production via partial oxidation of light hydrocarbon (e.g., methane) with minimal deactivation over long-term operations and further relates to gas-to-liquids conversion processes.
摘要:
The present invention relates to improved catalyst compositions, as well as methods of making and using such compositions. Preferred embodiments of the present invention comprise catalyst compositions having high melting point metallic alloys, and methods of preparing and using the catalysts. In particular, the metallic alloys are preferably rhodium alloys. Accordingly, the present invention also encompasses an improved method for converting a hydrocarbon containing gas and an atomic oxygen-containing gas to a gas mixture comprising hydrogen and carbon monoxide, i.e., syngas, using the catalyst compositions in accordance with the present invention. In addition, the present invention contemplates an improved method for converting hydrocarbon gas to liquid hydrocarbons using the novel syngas catalyst compositions described herein.
摘要:
A hydrothermally-stable catalyst, method for making the same, and process for producing hydrocarbon, wherein the catalyst is used in synthesis gas conversion to hydrocarbons. In one embodiment, the method comprises depositing a compound of a catalytic metal selected from Groups 8, 9, and 10 of the Periodic Table on a support material comprising boehmite to form a composite material; and calcining the composite material to form the catalyst. In other embodiments, the support material comprises synthetic boehmite, natural boehmite, pseudo-boehmite, or combinations thereof.
摘要:
The present invention relates to a process for the preparation of synthesis gas (i.e., a mixture of carbon monoxide and hydrogen), typically labeled syngas. More particularly, the present invention relates to a regeneration method for a syngas catalyst. Still more particularly, the present invention relates to the regeneration of syngas catalysts using a re-dispersion technique. One embodiment of the re-dispersion technique involves the treatment of a deactivated syngas catalyst with a re-dispersing gas, preferably a carbon monoxide-containing gas such as syngas. If necessary, the catalyst is then exposed to hydrogen for reduction and further re-dispersion.
摘要:
A stabilized catalyst support having improved hydrothermal stability, catalyst made therefrom, and method for producing hydrocarbons from synthesis gas using said catalyst. The stabilized support is made by a method comprising treating a crystalline hydrous alumina precursor in contact with at least one structural stabilizer or compound thereof. The crystalline hydrous alumina precursor preferably includes an average crystallite size selected from an optimum range delimited by desired hydrothermal resistance and desired porosity. The crystalline hydrous alumina precursor preferably includes an alumina hydroxide, such as crystalline boehmite, crystalline bayerite, or a plurality thereof differing in average crystallite sizes by at least about 1 nm. The crystalline hydrous alumina precursor may be shaped before or after contact with the structural stabilizer or compound thereof. The treating includes calcining at 450° C. or more. Preferred structural stabilizers can include cobalt, magnesium, manganese, manganese, zirconium, boron, aluminum, barium, silicon, lanthanum, oxides thereof, or combinations thereof.