摘要:
A low temperature sintering dielectric ceramic composition, which exhibits high dielectric constant, low dielectric loss, high electrical resistivity, high mechanical strength and narrow grain size distribution, is disclosed. The ceramic composition is a binary system comprising lead magnesium niobate (Pb(Mg.sub.1/3 Nb.sub.2/3)O.sub.3) and copper oxide, or a ternary system comprising lead magnesium niobate (Pb(Mg.sub.1/3 Nb.sub.2/3)O.sub.3), lead titanate (PbTiO.sub.3) and copper oxide. A multilayer ceramic capacitor comprising internal copper electrodes and ceramic dielectric layers consisting of the dielectric ceramic composition is also disclosed. A method of readily manufacturing the multilayer ceramic capacitor with copper internal electrodes is also disclosed.This fabrication method comprises a stop of forming a multilayer laminate by the green tape multilayer laminating method using dielectric ceramic tapes and a conductor paste containing CuO as its main component; a step of heat-treatment for decomposing and removing organic binder in air (binder removing process); a step of reducing CuO in the internal electrode layers to copper by heat-treatment in a mixed gas atmosphere of nitrogen and hydrogen (reduction process); and a step of sintering the multilayer laminate in a nitrogen atmosphere (sintering process).
摘要:
A laminated ceramic capacitor comprises a plurality of inner electrode layers for developing a capacitance, dielectric layers sandwiched with the inner electrode layers, and a pair of outer electrodes coupled to their associated inner electrode layers for output of the capacitance. The inner electrode layers are made of Ni. The dielectric layers are made of a dielectric ceramic composition having a structural formula of:{Bam(Til-xZrx)O2+m}1-.alpha.-.beta.-{MnO2}.alpha.-{X}.beta.where X is at least one of Yb2O3, Dy2O3, and ThO2 and m, x, .alpha., and .beta. are expressed as:0.98.ltoreq.m.ltoreq.1.020.ltoreq.x.ltoreq.0.20.005.ltoreq..alpha..ltoreq.0.050.001.ltoreq..beta..ltoreq.0.02so that the laminated ceramic capacitor can be minimized in the size, increased in the capacitance, and reduced in the cost of production.
摘要:
A multilayered glass-ceramic substrate using copper as wiring material is fabricated by a step of forming wiring patterns with Au paste for connection of semiconductor chip prepared by adding at least one of Ni powder, Pt powder and Pd powder to Au powder, and copper oxide paste mainly composed of CuO powder, on a green sheet, and burning out the organic pattern by heat treatment in air, a step of reducing the copper oxide electrode by heat treatment in a reducing atmosphere containing hydrogen, and a step of sintering the substrate material, copper oxide electrode and gold electrode by heat treatment in nitrogen. Since the Au wiring pattern is formed on the top layer of the multilayered substrate in this constitution, wire bonding of high reliability is realized. Besides, by making use of the excellent solderability of Au, it may be also applied in flip-chip mounting of semiconductor. In addition, in this Au paste composition, the melting point of Au may be raised, and alloying or fusing is avoided if sintered at 900.degree. C. together with Cu electrode.
摘要:
A thick film conductor composition for a ceramic wiring substrate comprises an inorganic ingredient mainly composed of a copper oxide powder added with a metal capable of forming a homogeneous solid solution with copper, and an organic vehicle. The inorganic ingredient may be further added with a manganese oxide or a heat resistant insulating material such as ceramics and/or glass.
摘要:
A method of manufacturing a multilayer ceramic using Cu as the conductor material is disclosed. This method comprises a step of forming a multilayer laminate by the green tape multilayer laminating method or by the thick film printing method on ceramic substrate with an insulating material with a mixture of ceramic and glass containing lead oxide as its main component and a conductor paste with CuO as its main component; a step of heat-treatment for decomposing and removing organic binder in air (binder removing process); a step of causing reduction at temperatures where copper oxide is reduced, but lead oxide is not, in a mixed gas atmosphere of nitrogen and hydrogen (reduction process); and a step of firing in a nitrogen atmosphere, thereby effecting sintering of the insulating material composed of ceramic and glass containing lead oxide and metallization of copper electrodes (firing process). For the uppermost layer electrodes, metal copper paste is employed, and a pattern printing process is conducted subsequent to the aforementioned reduction process, so that the sintering of the insulating material and the metallization of the uppermost layer are simultaneously performed; in this way, highly reliable uppermost layer Cu electrodes are obtainable.
摘要:
Disclosed is a dielectric paste for a ceramic multilayer wiring substrate, of which feature, among others, lies in the composition of inorganic components comprised of ceramics made of Al.sub.2 O.sub.3, SiO.sub.2, CaO and MgO, and a borosilicate glass. This can be prepared by mixing a part of the glass with the ceramic, calcining the mixture at a high temperature, and then adding the remaining glass to mix with the calcined product. The insulation layer is densely formed, and a dielectric paste excelling in electric insulating property can be obtained by mixing this composition with an organic liquid.
摘要翻译:公开了一种用于陶瓷多层布线基板的电介质浆料,其特征在于其中包括由Al 2 O 3,SiO 2,CaO和MgO制成的陶瓷和硼硅酸盐玻璃组成的无机组分的组成。 这可以通过将玻璃的一部分与陶瓷混合,在高温下煅烧混合物,然后加入剩余的玻璃与煅烧产物混合来制备。 绝缘层密集地形成,并且通过将该组合物与有机液体混合,可以获得优异的电绝缘性能的电介质糊料。
摘要:
A circuit component built-in module capable of mounting the circuit component with high density and having high heat releasing property and the high reliability. The circuit component built-in module 100 includes the insulating substrate 101 made of a first mixture 105 and a second mixture 106, wiring patterns 102a and 102b formed on one principal surface and another principal surface of the insulating substrate 101, a circuit component 103a electrically connected to the wiring pattern 102a and sealed with the second mixture 106 in an internal portion of the insulating substrate 101, the inner via conductor 104 electrically connecting the wiring pattern 102a and 102b.
摘要:
Conductive paste for via connection of a multilayer ceramic substrate, comprising: an inorganic component which consists of 30.0 to 70.0% by weight of powder of conductive material and the remainder being one of glass powder having a softening point higher than a starting point of sintering of insulating material and crystalline glass ceramic powder having a glass transition point higher than the starting point of sintering of the insulating material; and an organics vehicle component which consists of at least organic binder and solvent.
摘要:
A method for producing a multilayered ceramic substrate including the steps of:forming at least two green sheets each including a low-temperature firing glass-ceramic substrate material,forming an electrode pattern and a via hole electrode on and through each green sheet with a conductor paste,laminating said green sheets to obtain a laminate,forming a pair of green sheets which include an inorganic material which is not sintered at a firing temperature of the green sheet of the low-temperature firing glass-ceramic substrate material or lower, and then forming a hole through the inorganic material green sheet,laminating the inorganic material green sheet on the outermost green sheet of the laminate to obtain a resultant laminate in which the hole is positioned over a portion of the electrode pattern of an outermost low-temperature firing glass-ceramic green sheets of the laminate,firing said resultant laminate at the firing temperature, andremoving the unsintered inorganic material. The substrate does not shrink in its plane direction and surface smoothness, electrical resistance and solderability of the top layer wiring pattern are improved.
摘要:
A circuit component built-in module capable of mounting the circuit component with high density and having high heat releasing property and the high reliability. The circuit component built-in module 100 includes the insulating substrate 101 made of a first mixture 105 and a second mixture 106, wiring patterns 102a and 102b formed on one principal surface and another principal surface of the insulating substrate 101, a circuit component 103a electrically connected to the wiring pattern 102a and sealed with the second mixture 106 in an internal portion of the insulating substrate 101, the inner via conductor 104 electrically connecting the wiring pattern 102a and 102b.