Abstract:
A glass run channel assembly of the invention includes a connecting glass run channel that is connected to first and second glass run channels, respectively. A base bottom portion of the connecting glass run channel is formed with an insertion hole to which an engaging member can be attached, and lateral inner walls that configure the periphery of the insertion hole are formed with locking portions that are locked to a trunk portion when the engaging member is inserted into the insertion hole.
Abstract:
A glass run channel assembly of the invention includes a connecting glass run channel that is connected to first and second glass run channels, respectively. A base bottom portion of the connecting glass run channel is formed with an insertion hole to which an engaging member can be attached, and lateral inner walls that configure the periphery of the insertion hole are formed with locking portions that are locked to a trunk portion when the engaging member is inserted into the insertion hole.
Abstract:
A vehicle damping control apparatus is basically provided with a braking/accelerating torque generating component, a corrective torque calculating component, a corrective torque command value output component and a priority level setting component. The braking/accelerating torque generating component is configured to generate braking/accelerating torque in a wheel. The corrective torque calculating component is configured to calculate a corrective torque to suppress vehicle pitching vibration and vehicle bouncing vibration. The corrective torque command value output component is configured to output a corrective torque command value to the braking/accelerating torque generating component based on the corrective torque. The priority level setting component is configured to set a priority level for calculating the corrective torque command value such that vehicle bouncing vibration is suppressed with priority over vehicle pitching vibration.
Abstract:
A vehicle damping control apparatus is basically provided with a braking/accelerating torque generating component, a corrective torque calculating component, a corrective torque command value output component and a priority level setting component. The braking/accelerating torque generating component is configured to generate braking/accelerating torque in a wheel. The corrective torque calculating component is configured to calculate a corrective torque to suppress vehicle pitching vibration and vehicle bouncing vibration. The corrective torque command value output component is configured to output a corrective torque command value to the braking/accelerating torque generating component based on the corrective torque. The priority level setting component is configured to set a priority level for calculating the corrective torque command value such that vehicle bouncing vibration is suppressed with priority over vehicle pitching vibration.
Abstract:
A steered condition vehicle behavior improving apparatus is provided for a vehicle, wherein the vehicle is capable of running with a road wheel driven by a driving force from a power source. The steered condition vehicle behavior improving apparatus a steering operation detecting means and a driving force increasing means. The steering operation detecting means detects a steering operation of steering a steerable wheel of the vehicle. The driving force increasing means increases the driving force to the road wheel in response to detection of the steering operation by the steering operation detecting means, and reduces the driving force a predetermined time period after the increase of the driving force.
Abstract:
A vehicle headway maintenance assist system is provided that provides a haptic notification to an accelerator to alert the driver under prescribed conditions. The vehicle headway maintenance assist system includes a preceding vehicle detection section, a reaction force generating section, and a control section. The preceding vehicle detection section is configured to detect a headway distance between a host vehicle and a preceding vehicle. The reaction force generating section is configured to generate a reaction force based on the headway distance detected by the preceding vehicle detection section. The control section is configured to control a relationship between a driving force and an accelerator actuation amount by a driver to increase the accelerator actuation amount at a time before the reaction force generating section generates the reaction force.
Abstract:
A motor vehicle includes a vehicle driving operation support system. The vehicle driving operation support system senses an environment surrounding the motor vehicle; senses a traveling condition of the motor vehicle; calculates a risk potential of the motor vehicle on a basis of the sensed environment and the sensed traveling condition; controls the motor vehicle on a basis of a control setpoint. The vehicle driving operation support system sets on a basis of the calculated risk potential the control setpoint to a provisional setpoint effective for reducing the risk potential; senses driver's operation in reaction to the controlling operation with the control setpoint set to the provisional setpoint; and sets the control setpoint to a normal setpoint on a basis of the sensed driver's operation.
Abstract:
A vehicle driving assist system is provided that increases an actuation reaction force exerted by the accelerator pedal, when it is operated, as a risk potential with respect to a preceding obstacle increases. The system also lowers the driving force and increases the braking force exerted against the host vehicle as the risk potential increases. During braking/driving force control based on the risk potential, the system changes a braking/driving force control operating schedule in accordance with the driver's intentions with respect to accelerate or decelerate.
Abstract:
A system and method for assisting a driver operating a vehicle traveling on a road includes a scene recognition device detecting an obstacle in the path of the vehicle. Based on a distance (X) to the detected obstacle and a vehicle speed (Vh) of the vehicle, a first target discrimination is effected. Based on the distance (X) and a relative vehicle speed (Vr) of the vehicle with respect to the detected obstacle, a second target discrimination is effected. A first reaction force value (FA1, FB1) is determined versus a first risk (RP1) from the detected obstacle upon determination, by the first target discrimination, that the detected obstacle