Abstract:
A semiconductor device that includes an insulating substrate having an upper conductor formed on an upper surface thereof and a lower conductor formed on a lower surface of the insulating substrate. The device also includes a semiconductor element mounted on the upper surface of the insulating substrate with an under-element solder therebetween. The device further includes a heat sink whereon the insulating substrate is mounted with an under-substrate solder therebetween. The device additionally includes a silicone gel covering the semiconductor element, the under-element solder, and the upper conductor. In addition, the device includes a filler covering the lower conductor and the under-substrate solder, without covering the semiconductor element, the under-element solder, and the upper conductor, and having a thermal conductivity larger than a thermal conductivity of air and a fluidity higher than a fluidity of the silicone gel.
Abstract:
A power semiconductor module of the present invention comprises: a heat sink 1; a circuit substrate 2 mounted on the heat sink 1; a conductive pattern 10 provided on the circuit substrate 2; a low dielectric constant film 11 covering the conductive pattern 10; a case 7 provided on the heat sink 1 so as to enclose the circuit substrate 2; and a soft insulator 9 filling the space within the case 7. The low dielectric constant film 11 is preferably formed of silicon rubber, polyimide, or epoxy resin.
Abstract:
A first insulating substrate is formed on a heat sink, and a semiconductor element is formed thereon. An insulating resin casing is formed so as to cover the first insulating substrate and the semiconductor element. A second insulating substrate is mounted inside the insulating resin casing apart from the first insulating substrate. On the second insulating substrate, a resistance element that functions as a gate balance resistance is fixed by soldering. The second insulating substrate on which the resistance element was thus mounted was made apart from the first insulating substrate on which the semiconductor element was mounted, and was mounted on the side of the insulating resin casing.
Abstract:
It is an object of the present invention to provide an easily assemblable semiconductor device including a cover that covers a top of a case and is reliably fixed to the case defining an outline of the semiconductor device. A semiconductor device according to the present invention includes: a case defining an outline of the semiconductor device; a cover covering a top of the case; and a fastener mechanically fixing the cover to the case, a through-hole is formed in the cover, the case includes a projection inserted into the through-hole, and the fastener is attachable to the projection inserted into the through-hole of the cover from the outside of the cover and locks the projection upon the attachment to prevent the projection from falling off the through-hole.
Abstract:
It is an object of the present invention to provide an easily assemblable semiconductor device including a cover that covers a top of a case and is reliably fixed to the case defining an outline of the semiconductor device. A semiconductor device according to the present invention includes: a case defining an outline of the semiconductor device; a cover covering a top of the case; and a fastener mechanically fixing the cover to the case, a through-hole is formed in the cover, the case includes a projection inserted into the through-hole, and the fastener is attachable to the projection inserted into the through-hole of the cover from the outside of the cover and locks the projection upon the attachment to prevent the projection from falling off the through-hole.
Abstract:
A power semiconductor device module includes: a base plate; an insulating substrate mounted on the base plate; and a diode chip mounted on the insulating substrate, wherein the insulating substrate has an upper surface electrode layer disposed on an upper main surface and a lower surface electrode layer disposed on a lower main surface, the diode chip is joined onto the upper surface electrode layer, the lower surface electrode layer is joined onto the upper main surface of the base plate, and a thermal resistance reducing section that reduces thermal resistance is provided in lower surface electrode layer or the base plate of a portion corresponding to a place immediately below the diode chip.
Abstract:
A semiconductor device according to the present invention has an insulating substrate having an upper conductor formed on the upper surface and a lower conductor formed on the lower surface; a semiconductor element mounted on the insulating substrate with an under-element solder therebetween; a heat sink whereon the insulating substrate is mounted with an under-substrate solder therebetween; a silicone gel covering the semiconductor element, the under-element solder and the upper conductor; and a filler covering the lower conductor and the under-substrate solder, and having a thermal conductivity larger than the thermal conductivity of air and a fluidity higher than the fluidity of the silicone gel.
Abstract:
A first insulating substrate is formed on a heat sink, and a semiconductor element is formed thereon. An insulating resin casing is formed so as to cover the first insulating substrate and the semiconductor element. A second insulating substrate is mounted inside the insulating resin casing apart from the first insulating substrate. On the second insulating substrate, a resistance element that functions as a gate balance resistance is fixed by soldering. The second insulating substrate on which the resistance element was thus mounted was made apart from the first insulating substrate on which the semiconductor element was mounted, and was mounted on the side of the insulating resin casing.
Abstract:
An object of the present invention is to provide a semiconductor device that allows the life of solder joint parts of electronic components to be increased. The semiconductor device according to the present invention includes ceramic, an upper pattern formed on the ceramic, and a resistor connected onto the upper pattern via solder. The upper pattern has a portion formed in a recess shape, the portion being connected to the resistor via the solder.
Abstract:
A power semiconductor module of the present invention comprises: a heat sink 1; a circuit substrate 2 mounted on the heat sink 1; a conductive pattern 10 provided on the circuit substrate 2; a low dielectric constant film 11 covering the conductive pattern 10; a case 7 provided on the heat sink 1 so as to enclose the circuit substrate 2; and a soft insulator 9 filling the space within the case 7. The low dielectric constant film 11 is preferably formed of silicon rubber, polyimide, or epoxy resin.