Abstract:
A soldering portion (4) and a Ni plating mark (5) are simultaneously forming by plating on a wiring pattern (2) of an insulating substrate (1). A semiconductor chip (6) is mounted on the insulating substrate (1). A position of the insulating substrate (1) is recognized by the Ni plating mark (5) and a wire (7) is bonded to the semiconductor chip (6). An electrode (8) is joined to the soldering portion (4) by solder (9). The insulating substrate (1), the semiconductor chip (6), the wire (7), and the electrode (8) are encapsulated in an encapsulation material (13).
Abstract:
A semiconductor device includes a main current external electrode for connecting a high-voltage main current electrode of a power semiconductor element to the outside, and a resin case into which the main current external electrode is press fitted. The main current external electrode has a press-fitted fixing portion and a claw fixing portion for fixation to the resin case. The claw fixing portion includes a projection passing through a through hole defined in the resin case, and having a bendable claw portion at its tip end.
Abstract:
A semiconductor device that includes an insulating substrate having an upper conductor formed on an upper surface thereof and a lower conductor formed on a lower surface of the insulating substrate. The device also includes a semiconductor element mounted on the upper surface of the insulating substrate with an under-element solder therebetween. The device further includes a heat sink whereon the insulating substrate is mounted with an under-substrate solder therebetween. The device additionally includes a silicone gel covering the semiconductor element, the under-element solder, and the upper conductor. In addition, the device includes a filler covering the lower conductor and the under-substrate solder, without covering the semiconductor element, the under-element solder, and the upper conductor, and having a thermal conductivity larger than a thermal conductivity of air and a fluidity higher than a fluidity of the silicone gel.
Abstract:
A first insulating substrate is formed on a heat sink, and a semiconductor element is formed thereon. An insulating resin casing is formed so as to cover the first insulating substrate and the semiconductor element. A second insulating substrate is mounted inside the insulating resin casing apart from the first insulating substrate. On the second insulating substrate, a resistance element that functions as a gate balance resistance is fixed by soldering. The second insulating substrate on which the resistance element was thus mounted was made apart from the first insulating substrate on which the semiconductor element was mounted, and was mounted on the side of the insulating resin casing.
Abstract:
A power semiconductor device module includes: a base plate; an insulating substrate mounted on the base plate; and a diode chip mounted on the insulating substrate, wherein the insulating substrate has an upper surface electrode layer disposed on an upper main surface and a lower surface electrode layer disposed on a lower main surface, the diode chip is joined onto the upper surface electrode layer, the lower surface electrode layer is joined onto the upper main surface of the base plate, and a thermal resistance reducing section that reduces thermal resistance is provided in lower surface electrode layer or the base plate of a portion corresponding to a place immediately below the diode chip.
Abstract:
A power module includes a substrate with a power semiconductor device mounted thereon, a case having an interior in which the substrate is disposed, a cooling fin having a surface on which the substrate and the case are placed, and a smoothing capacitor disposed on an opposite surface of the cooling fin from the surface on which the substrate is placed, the smoothing capacitor being electrically connected to the power semiconductor device for smoothing a voltage to be externally supplied to the power semiconductor device.
Abstract:
A power semiconductor device module includes: a base plate; an insulating substrate mounted on the base plate; and a diode chip mounted on the insulating substrate, wherein the insulating substrate has an upper surface electrode layer disposed on an upper main surface and a lower surface electrode layer disposed on a lower main surface, the diode chip is joined onto the upper surface electrode layer, the lower surface electrode layer is joined onto the upper main surface of the base plate, and a thermal resistance reducing section that reduces thermal resistance is provided in lower surface electrode layer or the base plate of a portion corresponding to a place immediately below the diode chip.
Abstract:
A semiconductor device according to the present invention has an insulating substrate having an upper conductor formed on the upper surface and a lower conductor formed on the lower surface; a semiconductor element mounted on the insulating substrate with an under-element solder therebetween; a heat sink whereon the insulating substrate is mounted with an under-substrate solder therebetween; a silicone gel covering the semiconductor element, the under-element solder and the upper conductor; and a filler covering the lower conductor and the under-substrate solder, and having a thermal conductivity larger than the thermal conductivity of air and a fluidity higher than the fluidity of the silicone gel.
Abstract:
A first insulating substrate is formed on a heat sink, and a semiconductor element is formed thereon. An insulating resin casing is formed so as to cover the first insulating substrate and the semiconductor element. A second insulating substrate is mounted inside the insulating resin casing apart from the first insulating substrate. On the second insulating substrate, a resistance element that functions as a gate balance resistance is fixed by soldering. The second insulating substrate on which the resistance element was thus mounted was made apart from the first insulating substrate on which the semiconductor element was mounted, and was mounted on the side of the insulating resin casing.
Abstract:
A silicone resin for sealing a semiconductor chip. A cured silicone resin, which is obtained by curing the silicone resin at a given temperature, has a percent elongation, after fracture, measured at a room temperature, not less than 4% of a penetration number at room temperature. A semiconductor device sealed with the silicone resin, when subjected to a heat cycle or a vibration test, provides resistance to cracking, forming of voids, and interfacial peeling-off. The cured silicone resin may have a penetration number not less than 10 and not more than 80 and a loss elasticity not less than 17% of the storage elasticity. A resin member made of the cured silicone resin and sealing a semiconductor chip may include a filler, such as silica or alumina, having a coefficient of linear thermal expansion lower than that of the cured silicone resin.