摘要:
An apparatus is disclosed for detecting flag velocity during a eutectic process for bonding two wafers. The apparatus includes a plurality of sensors for detecting a time and/or velocity of a plurality of flags within a flag-out mechanism. The apparatus also includes one or more displays displaying time durations associated with the movement of the flags during the bonding process. Also disclosed is a method of aligning wafers in a eutectic bonding process. The method includes determining one or more time durations associated with the movement of the flags in the plurality of flags. The method also includes determining if a misalignment has occurred based on the one or more time durations associated with the movement of the flags.
摘要:
A method for fabricating a semiconductor apparatus including providing a first silicon substrate having a first contact, wherein providing the first silicon substrate comprises forming a silicide layer between the first silicon substrate and a first metal layer. The method further includes providing a second silicon substrate having a second contact comprising a second metal layer and placing the first contact in contact with the second contact. The method further includes heating the first and second metal layers to form a metallic alloy, whereby the metallic alloy bonds the first contact to the second contact.
摘要:
A method of integrated circuit fabrication is provided, and more particularly fabrication of a semiconductor apparatus with a metallic alloy. An exemplary structure for a semiconductor apparatus comprises a first silicon substrate having a first contact comprising a silicide layer between the substrate and a first metal layer; a second silicon substrate having a second contact comprising a second metal layer; and a metallic alloy between the first metal layer of the first contact and the second metal layer of the second contact.
摘要:
The disclosure relates to integrated circuit fabrication, and more particularly to a semiconductor apparatus with a metallic alloy. An exemplary structure for an apparatus comprises a first silicon substrate; a second silicon substrate; and a contact connecting each of the first and second substrates, wherein the contact comprises a Ge layer adjacent to the first silicon substrate, a Cu layer adjacent to the second silicon substrate, and a metallic alloy between the Ge layer and Cu layer.
摘要:
A micro electro mechanical system (MEMS) structure includes a first substrate structure including a bonding pad structure. The bonding pad structure has at least one recess therein. A second substrate structure is bonded with the bonding pad structure of the first substrate structure.
摘要:
A method of smoothening a dielectric layer. First, a substrate is provided. Next, a dielectric layer is formed on the semiconductor substrate. Finally, the dielectric layer is smoothened by a plasma treatment employing a silane based gas and a nitrogen based gas.
摘要:
A method of cleaning a semiconductor wafer includes: loading a semiconductor wafer into a cell having an annular trough; moving a plurality of nozzles into operational orientations for spraying a cleaning solution onto a top surface of the loaded semiconductor wafer; spraying the cleaning solution from each nozzle onto the top surface of the loaded semiconductor wafer in a direction defined by each nozzle's operational orientation such that a patterned flow of cleaning solution is formed on the top surface of the loaded semiconductor wafer; and collecting the cleaning solution in the annular trough of the cell as it flows off the top surface of the loaded semiconductor wafer.
摘要:
A method of fabricating a copper interconnect on a substrate is disclosed in which the interconnect and substrate are subjected to a low temperature anneal subsequent to polarization of the interconnect and prior to deposition of an overlying dielectric layer. The low temperature anneal inhibits the formation of hillocks in the copper material during subsequent high temperature deposition of the dielectric layer. Hillocks can protrude through passivation layer, thus causing shorts within the connections of the semiconductor devices formed on the substrate. In one example, the interconnect and substrate are annealed at a temperature of about 200° C. for a period of about 180 seconds in a forming gas environment comprising hydrogen (5 parts per hundred) and nitrogen (95 parts per hundred).
摘要:
A method for forming porous silicon oxide film, comprising the following steps. A CVD chamber having inner walls and a wafer chuck/heater is provided. At least a portion of the CVD chamber inner walls is pre-coated with a layer of first PECVD silicon oxide film having a first thermal CVD oxide deposition rate thereupon. A semiconductor wafer is placed on the wafer chuck/heater within pre-coated CVD chamber. The semiconductor wafer including an upper second PECVD silicon oxide film having a second thermal CVD oxide deposition rate thereupon that is less than the first thermal CVD oxide deposition rate upon the first PECVD silicon oxide film coating the CVD chamber inner walls. A porous silicon oxide film is deposited upon the upper second PECVD silicon oxide film overlying the semiconductor wafer. The porous silicon oxide film being different from the first PECVD silicon oxide film coating the CVD chamber inner walls.
摘要:
An embodiment of the disclosure provides a semiconductor device. The semiconductor device includes a plurality of metallization layers comprising a topmost metallization layer. The topmost metallization layer has two metal features having a thickness T1 and being separated by a gap. A composite passivation layer comprises a HDP CVD oxide layer under a nitride layer. The composite passivation layer is disposed over the metal features and partially fills the gap. The composite passivation layer has a thickness T2 about 20% to 50% of the thickness T1.