摘要:
A single-crystal layer of a first semiconductor material including single-crystal nanostructures of a second semiconductor material, the nanostructures being distributed in a regular crystallographic network with a centered tetragonal prism.
摘要:
A method for manufacturing an electronic component on a semiconductor substrate, including forming at least one opening in the substrate; forming in the bottom and on the walls of the opening and on the substrate an alternated succession of layers of a first material and of a second material, the second material being selectively etchable with respect to the first material and the substrate; trimming the layer portions of the first material and of the second material which are not located in the opening; selectively etching a portion of the first material to obtain trenches; and filling the trenches with at least one third material.
摘要:
The invention relates to a single-crystal layer of a first semiconductor material including single-crystal nanostructures of a second semiconductor material, the nanostructures being distributed in a regular crystallographic network with a centered tetragonal prism.
摘要:
A method for manufacturing an electronic component on a semiconductor substrate, including forming at least one opening in the substrate; forming in the bottom and on the walls of the opening and on the substrate an alternated succession of layers of a first material and of a second material, the second material being selectively etchable with respect to the first material and the substrate; trimming the layer portions of the first material and of the second material which are not located in the opening; selectively etching a portion of the first material to obtain trenches; and filling the trenches with at least one third material.
摘要:
The invention relates to a single-crystal layer of a first semiconductor material including single-crystal nanostructures of a second semiconductor material, the nanostructures being distributed in a regular crystallographic network with a centered tetragonal prism
摘要:
The process comprises: etching, in a semiconductor substrate (2), at least one trench (3) with predetermined width and depth; depositing, on the substrate and in the trench, a stack of successive and alternate layers of Si1−xGex (0
摘要:
A process and a device for fabricating a semiconductor device having a gate dielectric made of high-k material, includes a step of depositing, directly on the gate dielectric, a first layer of Si1−xGex, where 0.5
摘要:
A method for forming on a Ge or Si monocrystalline substrate successive Si/Ge, Si/SiGe, or Si/SiGe/Ge layers for a Ge substrate and inversely for a Si substrate is described. Electrochemical treatment of the stack of layers to make the layers porous and form therein residual crystallites is also described. The invention may be used to provide devices having layers of planes of quantum drops.
摘要:
The process consists in depositing, by chemical vapour deposition using a mixture of silicon and germanium precursor gases, a single-crystal layer of silicon or germanium on a germanium or silicon substrate by decreasing or increasing the temperature in the range 800-450° C. and at the same time by increasing the Si/Ge or Ge/Si weight ratio from 0 to 100% in the precursor gas mixture, respectively.
摘要:
A method of nitriding the gate oxide layer of a semiconductor device includes the chemical growth on a silicon substrate of a native silicon oxide layer ≦1 nm thick; treating said substrate coated with the native silicon oxide layer with gas NO at a temperature ≦700° C. and a pressure level ≦104 Pa to obtain a nitrided native silicon oxide layer; and the growth of the gate oxide layer. The method is applicable to PMOS devices. Further modifications and alternative embodiments of various aspects of the invention will be apparent to those skilled in the art in view of this description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as the presently preferred embodiments. Elements and materials may be substituted for those illustrated and described herein, parts and processes may be reversed, and certain features of the invention may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description of the invention. Changes may be made in the elements described herein without departing from the spirit and scope of the invention as described in the following claims.