摘要:
Methods of decreasing the effective dielectric constant present between two conducting components of an integrated circuit are described. The methods involve the use of a gas phase etch which is selective towards the oxygen-rich portion of the low-K dielectric layer. The etch rate attenuates as the etch process passes through the relatively high-K oxygen-rich portion and reaches the low-K portion. The etch process may be easily timed since the gas phase etch process does not readily remove the desirable low-K portion.
摘要:
Provided are methods for re-incorporating carbon into low-k films after processes which result in depletion of carbon from the films. Additionally, methods for replenished depleted carbon and capping with tantalum nitride are also described.
摘要:
A method for restoring the dielectric constant of a low dielectric constant film is described. A porous dielectric layer having a plurality of pores is formed on a substrate. The plurality of pores is then filled with an additive to provide a plugged porous dielectric layer. Finally, the additive is removed from the plurality of pores.
摘要:
Methods for patterning films and their resulting structures. In an embodiment, an amorphous carbon mask is formed over a substrate, such as a damascene layer. A spacer layer is deposited over the amorphous carbon mask and the spacer layer is etched to form a spacer and to expose the amorphous carbon mask. The amorphous carbon mask is removed selectively to the spacer to expose the substrate layer. A gap fill layer is deposited around the spacer to cover the substrate layer but expose the spacer. The spacer is removed selectively to form a gap fill mask over the substrate. The pattern of the gap fill mask is transferred, in one implementation, into a damascene layer to remove at least a portion of an IMD and form an air gap.
摘要:
A method for restoring the dielectric constant of a low dielectric constant film is described. A porous dielectric layer having a plurality of pores is formed on a substrate. The plurality of pores is then filled with an additive to provide a plugged porous dielectric layer. Finally, the additive is removed from the plurality of pores.
摘要:
Methods for patterning films and their resulting structures. In an embodiment, an amorphous carbon mask is formed over a substrate, such as a damascene layer. A spacer layer is deposited over the amorphous carbon mask and the spacer layer is etched to form a spacer and to expose the amorphous carbon mask. The amorphous carbon mask is removed selectively to the spacer to expose the substrate layer. A gap fill layer is deposited around the spacer to cover the substrate layer but expose the spacer. The spacer is removed selectively to form a gap fill mask over the substrate. The pattern of the gap fill mask is transferred, in one implementation, into a damascene layer to remove at least a portion of an IMD and form an air gap.
摘要:
Embodiments of the present invention pertain to methods of forming features on a substrate using a self-aligned triple patterning (SATP) process. A stack of layers is patterned near the optical resolution of a photolithography system using a high-resolution photomask. The heterogeneous stacks are selectively etched to undercut a hard mask layer beneath overlying cores. A dielectric layer, which is flowable during formation, is deposited and fills the undercut regions as well as the regions between the heterogeneous stacks. The dielectric layer is anisotropically etched and a conformal spacer is deposited on and between the cores. The spacer is anisotropically etched to leave two spacers between each core. The cores are stripped and the spacers are used together with the remaining hard mask features to pattern the substrate at triple the density of the original pattern.
摘要:
A through-silicon via fabrication method comprises forming a substrate by bonding the front surface of a silicon plate to a carrier using an adhesive layer therebetween to expose the back surface of the silicon plate. A silicon nitride passivation layer is deposited on the exposed back surface of the silicon plate of the substrate. A plurality of through holes are etched in the silicon plate, the through holes comprising sidewalls and bottom walls. A metallic conductor is deposited in the through holes to form a plurality of through-silicon vias.
摘要:
The present invention comprises a method of reducing photoresist mask collapse when the photoresist mask is dried after immersion development. As feature sizes continue to shrink, the capillary force of water used to rinse a photoresist mask approaches the point of being greater than adhesion force of the photoresist to the ARC. When the capillary force exceeds the adhesion force, the features of the mask may collapse because the water pulls adjacent features together as the water dries. By depositing a hermetic oxide layer over the ARC before depositing the photoresist, the adhesion force may exceed the capillary force and the features of the photoresist mask may not collapse.
摘要:
A method of forming an interconnect structure comprising: forming a sacrificial inter-metal dielectric (IMD) layer over a substrate, wherein the sacrificial IMD layer comprising a carbon-based film, such as amorphous carbon, advanced patterning films, porous carbon, or any combination thereof; forming a plurality of metal interconnect lines within the sacrificial IMD layer; removing the sacrificial IMD layer, with an oxygen based reactive process; and depositing a non-conformal dielectric layer to form air gaps between the plurality of metal interconnect lines. The metal interconnect lines may comprise copper, aluminum, tantalum, tungsten, titanium, tantalum nitride, titanium nitride, tungsten nitride, or any combination thereof. Carbon-based films and patterned photoresist layers may be simultaneously removed with the same reactive process. Highly reactive hydrogen radicals processes may be used to remove the carbon-based film and simultaneously pre-clean the metal interconnect lines prior to the deposition of a conformal metal barrier liner.