摘要:
A contact magnetic transfer (CMT) master template has a flexible plastic film with a planarized top or upper surface containing magnetic islands separated from one another by nonmagnetic regions. The flexible plastic film is secured at its perimeter to a silicon annulus that provides rigid support at the perimeter of the film. The plastic film is preferably polyimide that has recesses filled with the magnetic material that form the pattern of magnetic islands. The upper surfaces of the islands and the upper surfaces of the nonmagnetic regions form a continuous planar surface. The nonmagnetic regions are formed of chemical-mechanical-polishing (CMP) stop layer material that remains after a CMP process has planarized the upper surface of the plastic film.
摘要:
A contact magnetic transfer (CMT) master template is made by first adhering a plastic film to a first surface of a silicon wafer. A resist pattern is then formed on the polyimide film and the polyimide is reactive-ion-etched through the resist to form recesses. The resist is removed and a chemical-mechanical-polishing (CMP) stop layer is deposited over the non-recessed regions of the polyimide, and optionally into the bottoms of the recesses. A layer of magnetic material is then deposited over the polyimide film to fill the recesses. A CMP process is then performed to remove magnetic material above the recesses and above the non-recessed regions and continued until the CMP stop layer is reached. The resulting upper surface of the polyimide film is then a continuous planar film of magnetic islands and regions of CMP stop layer material that function as the nonmagnetic regions of the template.
摘要:
A method for fabricating a negative thermal expanding system device includes coating a wafer with a thermally decomposable polymer, patterning the decomposable polymer into repeating disk patterns, releasing the decomposable polymer from the wafer and forming a sheet of repeating patterned disks, suspending the sheet into a first solution with seeding compounds for electroless decomposition, removing the sheet from the first solution, suspending the sheet into a second solution to electrolessly deposit a first layer material onto the sheet, removing the sheet from the second solution, suspending the sheet into a third solution to deposit a second layer of material having a lower TCE value than the first layer of material, separating the patterned disks from one another, and annealing thermally the patterned disks to decompose the decomposable polymer and creating a cavity in place of the decomposable polymer.
摘要:
A pillar structure that is contacted by a vertical contact is formed in an integrated circuit. A hard mask is formed and utilized to pattern a least a portion of the pillar structure. The hard mask comprises carbon. Subsequently, the hard mask is removed. A conductive material is then deposited in a region previously occupied by the hard mask to form the vertical contact. The hard mask may, for example, comprise diamond-like carbon. The pillar structure may have a width or diameter less than about 100 nanometers.
摘要:
A structure for aligning a first set of features of a fabrication level of an integrated circuit chip to an electron beam alignment target. The structure including a first trench in a semiconductor substrate, the first trench extending from a top surface of the substrate into the substrate a first distance; an electron back-scattering layer in a bottom of the first trench; a dielectric capping layer in the trench over the back-scattering layer; and a second trench in the substrate, the second trench extending from the top surface of the substrate into the substrate a second distance, the second distance less than the first distance.
摘要:
Techniques for embedding silicon germanium (e-SiGe) source and drain stressors in nanoscale channel-based field effect transistors (FETs) are provided. In one aspect, a method of fabricating a FET includes the following steps. A doped substrate having a dielectric thereon is provided. At least one silicon (Si) nanowire is placed on the dielectric. One or more portions of the nanowire are masked off leaving other portions of the nanowire exposed. Epitaxial germanium (Ge) is grown on the exposed portions of the nanowire. The epitaxial Ge is interdiffused with Si in the nanowire to form SiGe regions embedded in the nanowire that introduce compressive strain in the nanowire. The doped substrate serves as a gate of the FET, the masked off portions of the nanowire serve as channels of the FET and the embedded SiGe regions serve as source and drain regions of the FET.
摘要:
A structure for aligning a first set of features of a fabrication level of an integrated circuit chip to an electron beam alignment target. The structure including a first trench in a semiconductor substrate, the first trench extending from a top surface of the substrate into the substrate a first distance; an electron back-scattering layer in a bottom of the first trench; a dielectric capping layer in the trench over the back-scattering layer; and a second trench in the substrate, the second trench extending from the top surface of the substrate into the substrate a second distance, the second distance less than the first distance.
摘要:
A method of forming a negative coefficient of thermal expansion particle includes flattening a hollow sphere made of a first material, annealing the flattened hollow sphere at a reference temperature above a predetermined maximum use temperature to set a stress minimum of the flattened hollow sphere, and forming a coating made of a second material on the flattened hollow sphere at the reference temperature, the second material having a lower coefficient of thermal expansion than that of the first material, the negative coefficient of thermal expansion particle characterized by volumetric contraction when heated.
摘要:
A FET structure with a nanowire forming the FET channel, and doped source and drain regions formed by radial epitaxy from the nanowire body is disclosed. A top gated and a bottom gated nanowire FET structures are discussed. The source and drain fabrication can use either selective or non-selective epitaxy.
摘要:
A method for fabricating a negative thermal expanding system device includes coating a wafer with a thermally decomposable polymer, patterning the decomposable polymer into repeating disk patterns, releasing the decomposable polymer from the wafer and forming a sheet of repeating patterned disks, suspending the sheet into a first solution with seeding compounds for electroless decomposition, removing the sheet from the first solution, suspending the sheet into a second solution to electrolessly deposit a first layer material onto the sheet, removing the sheet from the second solution, suspending the sheet into a third solution to deposit a second layer of material having a lower TCE value than the first layer of material, separating the patterned disks from one another, and annealing thermally the patterned disks to decompose the decomposable polymer and creating a cavity in place of the decomposable polymer.