Power Detector with Wide Dynamic Range
    2.
    发明公开

    公开(公告)号:US20240288476A1

    公开(公告)日:2024-08-29

    申请号:US18534003

    申请日:2023-12-08

    CPC classification number: G01R19/2513 H03F1/0211 H04B10/07955 G01R31/40

    Abstract: A power detector with wide dynamic range. The power detector includes a linear detector, followed by a voltage-to-current-to-voltage converter, which is then followed by an amplification stage. The current-to-voltage conversion in the converter is performed logarithmically. The power detector generates a desired linear-in-dB response at the output. In this power detector, the distribution of gain along the signal path is optimized in order to preserve linearity, and to minimize the impact of offset voltage inherently present in electronic blocks, which would corrupt the output voltage. Further, the topologies in the sub-blocks are designed to provide wide dynamic range, and to mitigate error sources. Moreover, the temperature sensitivity is designed out by either minimizing temperature variation of an individual block such as the v-i-v detector, or using two sub-blocks in tandem to provide overall temperature compensation. In one aspect, active resistors are used in order to compensate for temperature variations.

    Constant VDS1 Bias Control for Stacked Transistor Configuration

    公开(公告)号:US20200007088A1

    公开(公告)日:2020-01-02

    申请号:US16264106

    申请日:2019-01-31

    Abstract: Various methods and circuital arrangements for biasing one or more gates of stacked transistors of an amplifier are presented, where the amplifier can have a varying supply voltage. According to one aspect, the gate of the input transistor of the amplifier is biased with a fixed voltage whereas the gates of the other transistors of the amplifier are biased with variable voltages that are linear functions of the varying supply voltage. According to another aspect, the linear functions are such that the variable voltages coincide with the fixed voltage at a value of the varying supply voltage for which the input transistor is at the edge of triode. According to another aspect, biasing of the stacked transistors is such that, while the supply voltage varies, the drain-to-source voltage of the input transistor is maintained to a fixed value whereas the drain-to-source voltages of all other transistors are equal to one another.

    Power amplifier self-heating compensation circuit

    公开(公告)号:US10305433B2

    公开(公告)日:2019-05-28

    申请号:US15908533

    申请日:2018-02-28

    Abstract: Temperature compensation circuits and methods for adjusting one or more circuit parameters of a power amplifier (PA) to maintain approximately constant Gain versus time during pulsed operation sufficient to substantially offset self-heating of the PA. Some embodiments compensate for PA Gain “droop” due to self-heating using a Sample and Hold (S&H) circuit. The S&H circuit samples and holds an initial temperature of the PA at commencement of a pulse. Thereafter, the S&H circuit generates a continuous measurement that corresponds to the temperature of the PA during the remainder of the pulse. A Gain Control signal is generated that is a function of the difference between the initial temperature and the operating temperature of the PA as the PA self-heats for the duration of the pulse. The Gain Control signal is applied to one or more adjustable or tunable circuits within a PA to offset the Gain droop of the PA.

    Controllable Temperature Coefficient Bias Circuit

    公开(公告)号:US20240402749A1

    公开(公告)日:2024-12-05

    申请号:US18736150

    申请日:2024-06-06

    Abstract: A controllable temperature coefficient bias (CTCB) circuit is disclosed. The CTCB circuit can provide a bias to an amplifier. The CTCB circuit includes a variable with temperature (VWT) circuit having a reference circuit and a control circuit. The control circuit has a control output, a first current control element and a second current control element. Each current control element has a “controllable” resistance. One of the two current control elements may have a relatively high temperature coefficient and another a relatively low temperature coefficient. A controllable resistance of one of the current control elements increases when the controllable resistance of the other current control element decreases. However, the “total resistance” of the current control circuit remains constant with a constant temperature. The VWT circuit has an output with a temperature coefficient that is determined by the relative amount of current that flows through each current control element of the control circuit. A Current Digital to Analog Converter (IDAC) scales the output of the VWT and provides the scaled output to an amplifier bias input.

Patent Agency Ranking