Abstract:
A vertical batch furnace assembly, comprising a core tube, an outer casing, a cooling chamber bounded and enclosed by the outer casing and the core tube, and at least one cooling gas supply emanating in the cooling chamber. The core tube has an elongated circumferential wall extending in a longitudinal direction, and is configured to accommodate wafers for processing in the vertical batch furnace. The outer casing extends around the core tube and comprises a heating element for applying a thermal treatment to wafers accommodated in the core tube. The at least one cooling gas supply comprises at least one cooling gas supply opening which is arranged such that the cooling gas enters the cooling chamber with a flow direction which is substantially tangent to the circumferential wall.
Abstract:
Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures are provided. In some embodiments, methods may include contacting a substrate with a first vapor phase reactant comprising a transition metal precursor and contacting the substrate with a second vapor phase reactant comprising an alkyl-hydrazine precursor. In some embodiments, related semiconductor device structures may include a PMOS transistor gate structure, the PMOS transistor gate structure including a transition metal nitride film and a gate dielectric between the transition nitride film and a semiconductor body. The transition metal nitride film includes a predominant (200) crystallographic orientation.
Abstract:
Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures are provided. In some embodiments methods may include contacting a substrate with a first reactant comprising a transition metal precursor, contacting the substrate with a second reactant comprising a niobium precursor and contacting the substrate with a third reactant comprising a nitrogen precursor. In some embodiments related semiconductor device structures may include a semiconductor body and an electrode comprising a transition metal niobium nitride disposed over the semiconductor body.
Abstract:
A showerhead including a body having an opening, a first plate positioned within the opening and having a plurality of slots, a second plate positioned within the opening and having a plurality of slots, and wherein each of the first plate plurality of slots are concentrically aligned with the second plate plurality of slots.
Abstract:
A radiation shield and an assembly and a reactor including the radiation shield are disclosed. The radiation shield can be used to control heat flux from a susceptor heater assembly and thereby enable better control of temperatures across a surface of a substrate placed on a surface of the susceptor heater assembly.
Abstract:
A method for forming a semiconductor device structure is disclosure. The method may include, depositing an NMOS gate dielectric and a PMOS gate dielectric over a semiconductor substrate, depositing a first work function metal over the NMOS gate dielectric and over the PMOS gate dielectric, removing the first work function metal over the PMOS gate dielectric, and depositing a second work function metal over the NMOS gate dielectric and over the PMOS gate dielectric. Semiconductor device structures including desired metal gate electrodes deposited by the methods of the disclosure are also disclosed.
Abstract:
The disclosure relates to a chemical deposition, treatment and/or infiltration apparatus for providing a chemical reaction on and/or in a surface of a substrate. The apparatus may have a top and a bottom reaction chamber part forming together a closable reaction chamber and an actuator constructed and arranged for moving the top and bottom reaction chamber parts with respect to each other from a closed position to an open position so as to allow access to an interior of the reaction chamber. A top substrate holder is connected to the top reaction chamber part to hold a substrate at least when the reaction chamber is in the open position and a bottom substrate holder is connected to the bottom reaction chamber part to hold the substrate when the reaction chamber is in the closed position.
Abstract:
Gas-phase reactors and systems are disclosed. Exemplary reactors include a reaction chamber having a tapered height. Tapering the height of the reactor is thought to reduce a pressure drop along the flow of gasses through the reactor. Exemplary reactors can also include a spacer within a gap to control a flow of gas between a region and a reaction chamber.
Abstract:
A pre-baking apparatus for heating a substrate upstream of a process tool is adapted to be connected to an EFEM (equipment front end module) and includes: a chamber which has a front face with multiple slots arranged in a height direction of the chamber, and which is divided into multiple compartments extending from the multiple slots, respectively, toward a rear end of the chamber for loading and unloading substrates; and a connecting frame for connecting the chamber to the process tool. The multiple compartments are separated from each other by a divider plate and provided with heaters for heating the multiple compartments, and each compartment has a gas injection port for blowing a hot inert gas over the substrate placed therein toward the slot.
Abstract:
A deposition apparatus includes a substrate supporting pin that is fixed to a supporting plate through an autoalignment control unit to prevent the substrate supporting pin from being broken when loading or unloading a substrate, thereby preventing damaging the substrate and also preventing decreased yield that may result due to the breakage of the substrate supporting pin.