摘要:
A system for treating infected tissue includes an applicator device. The applicator device has an electrode pair spaced apart and is positioned against infected tissue. An electrical power supply to generate a pulsed electric field across the electrode pair, resulting in the application of a pulsed electric field through the infected tissue. The pulsed electric field has a field strength within a range that when the pulsed electric field is applied, pores are formed in membranes of cells of the infected tissue. A method for treating infected tissue is disclosed. The method includes positioning an electrode pair against the infected tissue; applying a pulsed electric field across the electrode pair. The pulsed electric field has a field strength that when applied, pores are formed in membranes of cells of the infected tissue; and applying an antimicrobial agent into or onto the infected tissue when the pulsed electric field is applied.
摘要:
An antimicrobial medical device that includes a substrate having a metal surface that is made from a metal or metal alloy that may include stainless steel, cobalt, and titanium. Disposed on the metal surface is a first antimicrobial oxide layer that includes an antimicrobial metal that may include silver, copper, and zinc, and combinations thereof. The atoms of antimicrobial metal in the first antimicrobial oxide layer are of a first concentration. The first antimicrobial oxide layer is positioned in a direction opposite that of the metal surface. The device further includes a second antimicrobial oxide layer that includes an antimicrobial metal that may be silver, copper, and zinc, and combinations thereof. The atoms of the antimicrobial metal present in the second antimicrobial oxide layer are of a second concentration. The first concentration and the second concentration are not equal. Methods for making the antimicrobial medical device are also disclosed.
摘要:
An antimicrobial medical device that includes a substrate having a metal surface that is made from a metal or metal alloy that may include stainless steel, cobalt, and titanium. Disposed on the metal surface is a first antimicrobial oxide layer that includes an antimicrobial metal that may include silver, copper, and zinc, and combinations thereof. The atoms of antimicrobial metal in the first antimicrobial oxide layer are of a first concentration. The first antimicrobial oxide layer is positioned in a direction opposite that of the metal surface. The device further includes a second antimicrobial oxide layer that includes an antimicrobial metal that may be silver, copper, and zinc, and combinations thereof. The atoms of the antimicrobial metal present in the second antimicrobial oxide layer are of a second concentration. The first concentration and the second concentration are not equal. Methods for making the antimicrobial medical device are also disclosed.
摘要:
A method to enhance osteoblast functionality of a medical implant. The method may include obtaining the medical implant and treating a surface of the medical implant to modify the surface characteristics causing increase functionality of adjacent positioned osteoblasts. A method of increasing cellular activity of a medical implant is also disclosed. A medical device having enhanced cytocompatibility capabilities includes a metallic substrate with an outer surface. Attached to the outer surface is a composition of nanosized structures. A biosensor for use with a medical device, includes an electrode that is attached to an outer surface of the medical device. The biosensor measures electrochemical changes adjacent to the medical implant. Further, a method of manufacturing a medical implant with a biosensor for use in vivo and a method of integrating a biosensor with a medical implant for use in monitoring conductivity and electrochemical changes adjacent to the medical implant are disclosed.
摘要:
An antimicrobial medical device that includes a substrate having a metal surface that is made from a metal or metal alloy that may include stainless steel, cobalt, and titanium. Disposed on the metal surface is a first antimicrobial oxide layer that includes an antimicrobial metal that may include silver, copper, and zinc, and combinations thereof. The atoms of antimicrobial metal in the first antimicrobial oxide layer are of a first concentration. The first antimicrobial oxide layer is positioned in a direction opposite that of the metal surface. The device further includes a second antimicrobial oxide layer that includes an antimicrobial metal that may be silver, copper, and zinc, and combinations thereof. The atoms of the antimicrobial metal present in the second antimicrobial oxide layer are of a second concentration. The first concentration and the second concentration are not equal. Methods for making the antimicrobial medical device are also disclosed.
摘要:
A laser device, in particular a semiconductor laser, emitting optical radiation with a defined mode pattern can be produced from a standard Fabry-Perot (FP) laser by post-processing at the wafer level, i.e. before the wafer is separated into individual dies by cleaving/dicing. A sub-cavity is formed within the FP laser cavity. The sub-cavity has a predetermined length and is located between the FP facets. An aperiodic grating composed of a small number of contrast elements, typically less than 10, with predetermined inter-element separations and predetermined spacings relative to the sub-cavity is formed on or in the optical waveguide. The inter-element separations and the spacings relative to the sub-cavity produce a filtering function of the aperiodic grating for optical radiation propagating in the waveguide. The laser device is suitable for telecommunications applications due to its high side-mode-suppression ratio and narrow-linewidth.
摘要:
Provided is a method of reducing a number of viable microbes, including contacting microbes with an antibiotic compound and applying pulses of electricity having a duration of between about 50 nanoseconds and about 900 nanoseconds. The pulses of electricity may have an intensity between about 20 kV/cm and about 40 kV/cm. The pulses of electricity may be applied at a frequency of between about 0.1 Hz and about 10 Hz. The microbes may be a gram-negative or a gram-positive strain of bacteria and the antibiotic may be applied at a concentration for a duration, wherein applying the antibiotic to the strain at the concentration for the duration does not reduce a viable number of bacteria of the strain as much, or at all, when the pulses of electricity are not also applied.
摘要:
An antimicrobial medical device that includes a substrate having a metal surface that is made from a metal or metal alloy that may include stainless steel, cobalt, and titanium. Disposed on the metal surface is a first antimicrobial oxide layer that includes an antimicrobial metal that may include silver, copper, and zinc, and combinations thereof. The atoms of antimicrobial metal in the first antimicrobial oxide layer are of a first concentration. The first antimicrobial oxide layer is positioned in a direction opposite that of the metal surface. The device further includes a second antimicrobial oxide layer that includes an antimicrobial metal that may be silver, copper, and zinc, and combinations thereof. The atoms of the antimicrobial metal present in the second antimicrobial oxide layer are of a second concentration. The first concentration and the second concentration are not equal. Methods for making the antimicrobial medical device are also disclosed.