Abstract:
In a non-isolated DC/DC converter, a reference potential for a low-side pre-driver which drives a gate of a low-side MOSFET is applied from a portion except for a main circuit passing through a high-side MOSFET and the low-side MOSFET so that a parasitic inductance between a source of the low-side MOSFET and the pre-driver is increased without increasing the sum of parasitic inductances in the main circuit and negative potential driving of the gate of the low-side MOSFET can be performed and a self turn-on phenomenon can be prevented without adding any member and changing drive system.
Abstract:
In manufacturing a semiconductor integrated circuit device, an interconnect trench and a contact hole are formed in an interlayer insulating film formed over a first-level interconnect on a semiconductor substrate, a barrier film is formed inside of the trench and contact hole so that its film thickness increases from the center of the bottom of the hole toward the sidewalls all around the bottom of the contact hole, a copper film is formed over the barrier film, and a second-level interconnect and a connector portion (plug) are formed by polishing by CMP. In this way, the geometrically shortest pathway of an electrical current flowing from the second-level interconnect toward the first-level interconnect through a connector portion (plug) does not coincide with a thin barrier film portion which has the lowest electrical resistance, so that the current pathway can be dispersed and a concentration of electrons does not occur readily.
Abstract:
A SRAM of complete CMOS type having its memory cell composed of six MISFETs, in which a pair of local wiring lines for connecting the input/output terminals of CMOS inverters are formed of a refractory metal silicide layer formed over a first conducting layer constituting the individual gate electrodes of the drive MISFETs, the transfer MISFETs and the load MISFETs of the memory cell and in which a reference voltage line formed over the local wiring lines is arranged to be superposed over the local wiring lines to form a capacity element. Moreover, the capacity element is formed between the local wiring lines and the first conducting layer by superposing the local wiring lines over the first conducting layer. Moreover, the local wiring lines are formed by using resistance lowering means such as silicification. In addition, there are made common the means for lowering the resistance of the gate electrode of the transfer MISFETs and the means for forming the local wiring lines.
Abstract:
In forming five trenches buried with an intermediate conductive layer for connecting transfer MISFETs and driving MISFETs with vertical MISFETs formed thereover, in which the second and third trenches, and the first, fourth, and fifth trenches are formed separately by twice etching using first and second photoresist films as a mask. Since all the trenches can be formed at a good accuracy even in a case where the shortest distance between the first trench and the second or third trench, and the shortest distance between the second or third trench and the fourth trench is smaller than the resolution limit for the exposure light, the distance between each of the five trenches arranged in one identical memory cell can be reduced to be smaller than resolution limit for the exposure light.
Abstract:
In the semiconductor device, a control power MOSFET chip 2 is disposed on the input-side plate-like lead 5, and the drain terminal DT1 is formed on the rear surface of the chip 2, and the source terminal ST1 and gate terminal GT1 are formed on the principal surface of the chip 2, and the source terminal ST1 is connected to the plate-like lead for source 12. Furthermore, a synchronous power MOSFET chip 3 is disposed on the output-side plate-like lead 6, and the drain terminal DT2 is formed on the rear surface of the chip 3 and the output-side plate-like lead 6 is connected to the drain terminal DT2. Furthermore, source terminal ST2 and gate terminal GT2 are formed on the principal surface of the synchronous power MOSFET chip 3, and the source terminal ST2 is connected to the plate-like lead for source 13. The plate-like leads for source 12 and 13 are exposed, and therefore, it is possible to increase the heat dissipation capability of the MCM 1.
Abstract:
A technique is provided which permits formation within a single chip both a field effect transistor of high reliability capable of suppressing the occurrence of a crystal defect and a field effect transistor of a high integration degree. In a mask ROM section having an element isolation region with an isolation width of smaller than 0.3 μm, a planar shape of each active region ACT is made polygonal by cutting off the corners of a quadrangle, thereby suppressing the occurrence of a crystal defect in the active region ACT and diminishing a leakage current flowing between the source and drain of a field effect transistor. In a sense amplifier data latch section which is required to have a layout of a small margin in the alignment between a gate G of a field effect transistor and the active region ACT, the field effect transistor is disposed at a narrow pitch by making the active region ACT quadrangular.
Abstract:
An adaptive front-end architecture for a receiver is disclosed. In one embodiment, the adaptive front-end architecture includes an input configured to receive an input signal and a linear low-noise amplifier connected to the input and configured to amplify the input signal to produce an amplified input signal. The adaptive front-end architecture further includes a first passive mixer arrangement configured to generate first a local oscillator signal and mix the first local oscillator signal with the amplified input signal to produce a first baseband output signal. The adaptive front-end architecture further includes a second passive mixer arrangement configured to generate a second local oscillator signal and mix the second local oscillator signal with the input signal to produce a second baseband output signal. The adaptive front-end architecture further includes a baseband impedance component configured to filter the first baseband signal and/or the second baseband signal using impedance translation.
Abstract:
An encoding/decoding operation portion includes an encoding/decoding operation circuit and an avoiding path for detouring the encoding decoding operation circuit and can select between encoding or decoding input data in the encoding/decoding operation circuit and detouring the encoding/decoding operation circuit to output the input data without change. Only one wire has to be provided from a selector to a key storage portion and an initialization-vector storage portion. With this construction, it is possible to realize an encoding/decoding circuit which can suppress an increase in the number of wires used to transmit a content of key data to the key storage portion and the initialization-vector storage portion and does not cause complication of circuit layout.
Abstract:
A semiconductor device includes a semiconductor substrate, an interlayer insulating film, a tungsten film, a first barrier metal film, a second barrier metal film and a metal wiring film. The interlayer insulating film is formed on the semiconductor substrate, and has an opening. The tungsten film is embedded in the opening. The first barrier metal film is formed on the tungsten film and excludes a Ti film. The second barrier metal film is formed on the first barrier metal film and is a Ti-containing film. The metal wiring film is formed on the second barrier metal film.
Abstract:
Vertical MISFETs are formed over drive MISFETs and transfer MISFETs. The vertical MISFETs comprise rectangular pillar laminated bodies each formed by laminating a lower semiconductor layer (drain), an intermediate semiconductor layer, and an upper semiconductor layer (source), and gate electrodes formed on corresponding side walls of the laminated bodies with gate insulating films interposed therebetween. In each vertical MISFET, the lower semiconductor layer constitutes a drain, the intermediate semiconductor layer constitutes a substrate (channel region), and the upper semiconductor layer constitutes a source. The lower semiconductor layer, the intermediate semiconductor layer and the upper semiconductor layer are each comprised of a silicon film. The lower semiconductor layer and the upper semiconductor layer are doped with a p type and constituted of a p type silicon film.