Abstract:
Provided are a liquid dispersion of fluoride particles having a refractive index lower than that of, for example, magnesium fluoride, the liquid dispersion being excellent in dispersibility and suitable for production of an optical film such as an antireflection film; a composition for forming an optical film; and an optical film. A liquid dispersion of fluoride particles according to the present invention contains: fluoride particles; an anionic surfactant as a dispersant for the fluoride particles; and an organic solvent, wherein the fluoride particles contain at least aluminum, an alkali metal, and an alkaline earth metal as an optional element in a composition of the fluoride particles, and the fluoride particles are dispersed in the organic solvent.
Abstract:
An object of the invention is to provide a tetrafluoroborate producing method that allows high-yield, high-efficiency production of a tetrafluoroborate by a continuous process, a tetrafluoroborate-containing electrolyte, and an electrical storage device including such an electrolyte. The invention provides a method for producing a tetrafluoroborate, which includes: a first step including dissolving boron trifluoride gas in an organic solvent; a second step including adding, to the organic solvent, a fluoride (MFn, wherein M represents a metal or NH4, and 1≦n≦3) in an amount stoichiometrically equivalent to or less than the amount of the boron trifluoride so that a tetrafluoroborate solution is produced; and a third step including circulating the tetrafluoroborate solution through the first step so that the boron trifluoride gas is dissolved in the tetrafluoroborate solution instead of the organic solvent.
Abstract:
Provided is a method for purifying a difluorophosphate, in which a difluorophosphate is purified to a high purity. The method includes a method for purifying a difluorophosphate, comprising bringing hydrogen fluoride into contact with a difluorophosphate containing an impurity and subsequently heating and drying the difluorophosphate, or bringing the hydrogen fluoride into contact with the difluorophosphate containing the impurity while heating and drying the difluorophosphate containing the impurity, thereby removing the impurity.
Abstract:
To provide a technique for simply and easily producing a high-purity difluorophosphate and provide a production process of an electrolytic solution using the obtained difluorophosphate, an electrolytic solution and a secondary battery.A process for producing a difluorophosphate, comprising the following step (1) or (2): (1) reacting (A) at least one member selected from the group consisting of oxoacids, oxoacid anhydrides and oxyhalides of phosphorus with (B) a hexafluorophosphate in the presence of hydrogen fluoride, or (2) reacting at least one halide selected from the group consisting of alkali metal halides, alkaline earth metal halides, aluminum halides and onium halides with difluorophosphoric acid in the presence of a hexafluorophosphate. Also, a nonaqueous electrolytic solution containing the obtained difluorophosphate, and a nonaqueous electrolytic secondary battery containing the nonaqueous electrolytic solution.
Abstract:
A quaternary ammonium salt of the formula (1), a composition containing the quaternary ammonium salt and an organic solvent, and an electrochemical device using the salt wherein R1 and R2 are both methyl and X− is BF4− or N(CF3SO2)2−.
Abstract:
To provide a technique for simply and easily producing a high-purity difluorophosphate and provide a production process of an electrolytic solution using the obtained difluorophosphate, an electrolytic solution and a secondary battery.A process for producing a difluorophosphate, comprising the following step (1) or (2): (1) reacting (A) at least one member selected from the group consisting of oxoacids, oxoacid anhydrides and oxyhalides of phosphorus with (B) a hexafluorophosphate in the presence of hydrogen fluoride, or (2) reacting at least one halide selected from the group consisting of alkali metal halides, alkaline earth metal halides, aluminum halides and onium halides with difluorophosphoric acid in the presence of a hexafluorophosphate. Also, a nonaqueous electrolytic solution containing the obtained difluorophosphate, and a nonaqueous electrolytic secondary battery containing the nonaqueous electrolytic solution.
Abstract:
The invention aims at providing a platinum black material, without using an expensive and rare material, which is excellent in CO poisoning inhibiting effect, H2S poisoning inhibiting effect, SO4 poisoning inhibiting effect and HCHO poisoning inhibiting effect, and a method for fluorinating platinum black. The platinum black material is characterized by fluorine adsorbed on its surface. The method for fluorinating platinum black is characterized by allowing platinum black to stand in a mixed gas atmosphere of n inert gas and fluorine in a low-pressure chamber to make fluorine adsorbed on the surface of the platinum black.
Abstract:
Disclosed is a cleaning liquid which is capable of cleaning an object to be cleaned, to the surface of which cerium oxide adheres, by dissolving and removing cerium oxide in the form of cerium ions. A cleaning method using the cleaning liquid is also disclosed. The cleaning liquid for removing cerium oxide is characterized by containing hydrogen fluoride, at least one acid selected from the group consisting of hydrochloric acid, nitric acid, sulfuric acid, acetic acid, phosphoric acid, iodic acid and hydrobromic acid, and water. The cleaning liquid is also characterized by dissolving and removing cerium oxide in the form of cerium ions.
Abstract:
A process for preparing a high-purity quaternary ammonium salt comprising: (1) adding an oxide or hydroxide of a Group 1, 2, 12 or 13 metal to a quaternary ammonium salt containing a protonic acid salt of a tertiary amine as an impurity and thereby neutralizing the tertiary amine protonic acid salt with the metal oxide or hydroxide to convert the acid salt to a tertiary amine and water and to convert the metal oxide or hydroxide to a metal salt at the same time, and (2) removing the tertiary amine, water and metal salt produced from the system.
Abstract:
Provided is an apparatus capable of producing a fluoride crystal in a very short period of time, and a method suitable for producing a fluoride crystal using the apparatus. The apparatus comprises a chamber, a window material, and the like, and is modified such that it can evacuate air from the chamber to provide a high degree vacuum there. The apparatus further includes a crucible, which has a perforation at its bottom. The capillary portion of the perforation is adjusted to facilitate the contact of a seed crystal with a melt. By using the apparatus it is possible to stably produce high quality single crystals of fluorides in a short period of time.