Abstract:
The present invention is directed to a method and a system for the production of at least one polymeric yarn comprising means for mixing a polymer (1) with a first solvent yielding a mixture; means for homogenizing the mixture; means for rendering the mixture inert (21, 22, 23); means for dipping the mixture into a quenching bath (30), wherein an air gap is maintained before the mixture reaches the quenching bath (30) liquid surface forming at least one polymeric yarn; means for drawing (41) the at least one polymeric yarn at least once; means for washing (5) the at least one polymeric yarn with a second solvent that is more volatile than the first solvent; means for heating the at least one polymeric yarn (6); means for drawing at room temperature (7) the at least one polymeric yarn at least once; and means for heat drawing (8) the at least one polymeric yarn at least once. The instant invention also concerns a system and method of dosing a polymer mixture with a first solvent into an extruder (26), a device (5), a system and a method of solvent extraction from at least one polymeric yarn, and a method and system of mechanical pre-recovery (4) of at least one liquid in at least one polymeric yarn.
Abstract:
The present invention provides a method of forming a chemical mechanical polishing pad comprising providing a polymeric matrix with fluid-filled unexpanded microspheres, curing the polymeric matrix and heating the polymeric matrix and the microspheres to expand the microspheres.
Abstract:
The present invention provides a method of forming a chemical mechanical polishing pad, providing a tank with polymeric materials and a storage silo with microspheres. Further, the method includes the step of providing a curative storage tank with curing agents. Further, the method includes delivering the polymeric materials and the microspheres to a premix prep tank and forming a pre-mixture of the polymeric materials and the microspheres. The method further includes the step of recirculating the pre-mixture until a desired bulk density is reached. The method further provides the steps of delivering the pre-mixture to a premix run tank, forming a mixture of the pre-mixture and the curing agents, pouring the mixture into a mold and cutting the mold into the polishing pad.
Abstract:
A PROCESS FOR THE CONTINUOUS PERFORMANCE OF AN ANIONIC POLYMERIZATION LACTANS IS DISCLOSED. IN THE PROCESS CATALYSTS SUCH AS LACTAM ALKALI OR ALKALINE EARTH METAL COMPOUNDS AND ACTIVATORS SUCH AS ACYLATED LACTAMS OR ACYLATABLE COMPOUNDS ARE MIXED WITH MOLTEN LACTAM IN THE PRESENCE OF NITROGEN. THE PROCESS IS CHARACTERIZED BY THE FACT THAT SIMULTANEOUSLY ONE PORTION OF MOLTEN LACTAM IS MIXED WITH AN ACTIVATOR AND A SECOND PORTION IS MICE IXED WITH A CATALYST,IN EACH CASE WITH EXCLUSION OF OXYGEN AND CONTINUOUS NITROGEN ACTION ON THE TWO MELTS,BEFORE EVENTUALLY BEING METERED VIA A SYPHON-LIKE SPIRAL TUBE SYSTEM UNDER THE SAME TEMPERATURE ACTION AS THE MELTS TO A MIXING DEVICE INTO WHICH THE TWO SPIRAL TUBE SYSTEMS DISCHARGE WHEREBY POLYMERIZATION TAKES PLACE. ALSO DISCLOSED IS APPARATUS FOR USE IN THE DESCRIBED PROCESS CHARACTERIZED BY TWO FIRST CONTAINERS FOR PREPARING THE TWO LACTAM MELT PARTIAL QUANTITIVES TO WHICH IS CONNECTED IN EACH CASE A SECOND CONTAINER FOR A CATALYST OR AN ACTIVATOR WHICH VIA SYNCHRONOUSLY OPERATING LIQUID PUMPS ARE EACH CONNECTED WITH A SYPHON-LIKE SPIRAL TUBE SYSTEM LEADING TO A MIXING DEVICE, WHEREBY ALL CONTAINERS ARE SEALED IN AN AIR-TIGHT MANNER AND PUMPS AND SPIRAL TUBE SYSTEM ARE HEATABLE AND WHEREIN A NITROGEN FEED AND DRAIN SYSTEM AND A STIRRER ARE PROVIDED.
Abstract:
The present invention is directed to a method and a system for the production of at least one polymeric yarn comprising means for mixing a polymer (1) with a first solvent yielding a mixture; means for homogenizing the mixture; means for rendering the mixture inert (21, 22, 23); means for dipping the mixture into a quenching bath (30), wherein an air gap is maintained before the mixture reaches the quenching bath (30) liquid surface forming at least one polymeric yarn; means for drawing (41) the at least one polymeric yarn at least once; means for washing (5) the at least one polymeric yarn with a second solvent that is more volatile than the first solvent; means for heating the at least one polymeric yarn (6); means for drawing at room temperature (7) the at least one polymeric yarn at least once; and means for heat drawing (8) the at least one polymeric yarn at least once. The instant invention also concerns a system and method of dosing a polymer mixture with a first solvent into an extruder (26), a device (5), a system and a method of solvent extraction from at least one polymeric yarn, and a method and system of mechanical pre-recovery (4) of at least one liquid in at least one polymeric yarn.
Abstract:
The present invention provides a method of forming a chemical mechanical polishing pad comprising providing a polymeric matrix with fluid-filled unexpanded microspheres, curing the polymeric matrix and heating the polymeric matrix and the microspheres to expand the microspheres.
Abstract:
The present invention provides a method of forming a chemical mechanical polishing pad comprising, providing a tank with polymeric materials, providing a storage silo with microspheres and providing an isocyanate storage tank with isocyanates. The invention further provides delivering the polymeric materials and the microspheres to a premix prep tank, forming a pre-mixture of the polymeric materials and the microspheres, delivering the pre-mixture to a premix run tank and forming a mixture of the pre-mixture and the isocyanates. Further the invention provides injecting the mixture into a closed mold, curing the polishing pad in the mold and degassing at least one of the tank, isocyanate storage tank and the mold.
Abstract:
First and second virgin polymers, not normally miscible when combined in one or more conventional melt-processing means, are combined in a known melt-processing means having mechanical vibration, referred to as a TekFlow® “processor” in which the polymers are extensively shear-thinned, substantially disentangled and stress-fatigued. A process in which melts of each virgin polymer are separately modified, mixed and melt-processed in a conventional extruder, is also effective if the melt of one polymer, modified in a processor, is mixed with virgin melt before being modified in another processor. In each embodiment, the resulting blend is unexpectedly found to be a single phase, that is, a miscible blend.
Abstract:
A pump/dispenser, ratioing/mixer dispenser apparatus and a method and apparatus for precision vacuum degassed dispensing of work liquids are presented. The pump/dispenser is a positive displacement high precision piston/cylinder constant flush type with piston smaller than chamber. The piston is advanced along its stroke in tiny repeatable adjustably programmable steps, the infinitely adjustable precision ratioing programmable mixing being provided when two such pumps are used. The vacuum degassed work liquids dispensing system features the creation and maintenance of a positive absolute pressure on the work liquid(s) when exiting the degassing chamber(s) to the dispensing outlet(s) whether moved along the flow path through the precision dispensing pump(s) or other types of pump(s). Available softwear and adjustable programmable precision hardwear of the system may be provided by a widely available personal computer. Further degassing is provided by dispensing in a vacuum.
Abstract:
A formulation for a photopolymer composite material for a 3D printing system includes an acrylate oligomer, an inorganic hydrate, a reinforcing filler, and an ultraviolet (UV) initiator. In the formulation the acrylate oligomer may be found in the range between about 20.0-60.0 w % of the formulation. The inorganic hydrate may be found in the range between about 20.0-50.0 w % of the formulation. The reinforcing filler may be found in the range between about 5.0-60.0 w % of the formulation, and the UV initiator may be found in the range between about 0.001-0.5 w % of the formulation. A method of generating a formulation of a photopolymer composite material for use in a 3D printing system includes using an acrylate oligomer, an inorganic hydrate, a reinforcing filler, and an ultraviolet (UV) initiator.