Abstract:
A modification to rough polysilicon using ion implantation and silicide is provided herein. A method can comprise depositing a hard mask on a single crystal silicon, patterning the hard mask, and depositing metal on the single crystal silicon. The method also can comprise forming silicide based on causing the metal to react with exposed silicon of the single crystal silicon. Further, the method can comprise removing unreacted metal and stripping the hard mask from the single crystal silicon. Another method can comprise forming a MEMS layer based on fusion bonding a handle MEMS with a device layer. The method also can comprise implanting rough polysilicon on the device layer. Implanting the rough polysilicon can comprise performing ion implantation of the rough polysilicon. Further, the method can comprise performing high temperature annealing. The high temperature can comprise a temperature in a range between around 700 and 1100 degrees Celsius.
Abstract:
Embodiments of the present disclosure can include a method for frequency trimming a microelectromechanical resonator, the resonator comprising a substrate and a plurality of loading elements layered on a surface of the substrate, the method comprising: selecting a first loading element of the plurality of loading elements, the first loading element being layered on a surface of a region of interest of the substrate; heating the first loading element and substrate within the region of interest to a predetermined temperature using an optical energy source, causing the first loading element to diffuse into the substrate; and cooling the region of interest to form a eutectic composition layer bonding the loading element and the substrate within the region of interest.
Abstract:
A process for the production of accelerometers using the silicon on insulator method. The process comprises the following stages: a) producing a conductive monocrystalline silicon film on a silicon substrate and separated from the latter by an insulating layer; b) etching the silicon film and the insulating layer up to the substrate in order to fix the shape of the mobile elements and the measuring devices; c) producing electric contacts for the measuring devices; d) partial elimination of the insulating layer in order to free the mobile elements, the remainder of the insulating layer rendering integral the substrate and the moving elements.
Abstract:
Method and apparatus for reducing the curvature of a micromachined structure having lamella (12). Surface treatment by an ion beam (30) of the lamella (12) such as by sputtering removes regions of stress allowing the lamella (12) to return to a planar condition. The resulting outer surface is made suitable for use as a reflector and other purposes needing a substantially planar surface.
Abstract:
Method and apparatus for reducing the curvature of a micromachined structure having lamella (12). Surface treatment by an ion beam (30) of the lamella (12) such as by sputtering removes regions of stress allowing the lamella (12) to return to a planar condition. The resulting outer surface is made suitable for use as a reflector and other purposes needing a substantially planar surface.
Abstract:
A MEMS microphone includes a substrate having a cavity, a diaphragm disposed above the cavity and having a ventilation path, and a back plate disposed above the diaphragm and having a plurality of air holes. The ventilation path includes a plurality of slits extending in a circumferential direction.
Abstract:
Process for the production of accelerometers using the silicon on insulator method. The process comprises the following stages: a) producing a conductive monocrystalline silicon film on a silicon substrate and separated from the latter by an insulating layer; b) etching the silicon film and the insulating layer up to the substrate in order to fix the shape of the mobile elements and the measuring device; c) producing electric contacts for the measuring devices; d) partial elimination of the insulating layer in order to free the mobile elements, the remainder of the insulating layer rendering integral the substrate and the moving elements.