Abstract:
Aqueous formulations comprising (A) at least one organic complexing agent selected from (A1) alkali metal salts of aminopolycarboxylic acids and (A2) polymers bearing at least two —CH2—N(CH2COOH)-units per molecule, partially or fully neutralized with alkali, (B) at least one salt of at least one of the following acids: nitric acid, sulphuric acid, sulphamic acid, methanesulfonic acid, C1-C2-carboxylic acids, C2-C4-hydroxymonocarboxylic acids, C2-C7-dicarboxylic acids, unsubstituted or substituted with hydroxyl, and C4-C6-tricarboxylic acids, each unsubstituted or substituted with hydroxyl, (C) at least one compound selected from (C1) phosphoric acid C2-C10-monoalkyl esters, (C2) a C3-C10-alkynol, optionally alkoxylated with one to 10 alkoxide groups per hydroxyl group, and (C3) a C4-C10-alkynediol, optionally alkoxylated with one to 10 alkoxide groups per hydroxyl group, said aqueous formulations having pH values in the range of from 7.5 to 10.
Abstract:
A dense cleaning fluid for removing contaminants from a substrate and a method comprising same is disclosed herein. In one embodiment of the present invention, the dense cleaning fluid comprises a dense fluid and at least one acetylenic diol or acetylenic alcohol surfactant.
Abstract:
Process solutions comprising one or more surfactants are used to reduce the number of defects in the manufacture of semiconductor devices. In certain preferred embodiments, the process solution of the present invention may reduce defects when employed as a rinse solution either during or after the development of the CMP processing. Also disclosed is a method for reducing the number of defects on a plurality of post-CMP processed substrates employing the process solution of the present invention.
Abstract:
A dense cleaning fluid for removing contaminants from an substrate and a method comprising same is disclosed herein. In one embodiment of the present invention, the dense cleaning fluid comprises a dense fluid and at least one acetylenic diol or acetylenic alcohol surfactant.
Abstract:
The present invention pertains to glycidyl ether-capped acetylenic diol ethoxylates having a structure according to the formula: wherein R1 is hydrogen or a linear, branched, or cyclic alkyl group having from 1 to about 6 carbon atoms; R2 is a linear, branched, or cyclic alkyl group having from 1 to about 12 carbon atoms; R3=—CH2OR4; R4 is a linear, branched, or cyclic alkyl, alkenyl, aryl, or aralkyl group having from 2 to about 30 carbon atoms; (n+m) is from 1 to about 100; and (p+q) is from 0.5 to about 5 and its use to reduce equilibrium and dynamic surface tension in water-based compositions containing an organic or inorganic compound, particularly aqueous organic coating, ink, acid gas scrubbing and agricultural compositions.
Abstract translation:本发明涉及具有下式结构的缩水甘油醚封端炔属二醇乙氧基化物:其中R 1是氢或具有1至约6个碳原子的直链,支链或环状烷基; R 2是具有1至约12个碳原子的直链,支链或环状烷基; R 3 = -CH 2 OR 4; R 4是具有2至约30个碳原子的直链,支链或环状烷基,烯基,芳基或芳烷基; (n + m)为1〜约100; 和(p + q)为0.5至约5,并且其用于减少含有机或无机化合物,特别是水性有机涂料,油墨,酸性气体洗涤剂和农用组合物的水基组合物中的平衡和动态表面张力。
Abstract:
A method of use, as a perfuming ingredient, of a compound of formula I in the form of any one of its stereoisomers or a mixture thereof, and wherein each R1 represents a hydrogen atom or a methyl group and at least one of said R1 is a hydrogen atom; R2 represents a linear or branched C3-8 alkyl group or unsaturated groups; and R3 represents a hydrogen atom or a methyl group. These compounds impart odor notes of the violet leaves type optionally together with green odor notes.
Abstract:
The invention relates to an anticorrosive agent for metal components. In order to provide an environmentally compatible anticorrosive agent which can be applied to metal components without components having to be freed of the anticorrosive agent before installation, allows good coating even on oily surfaces, has a great anticorrosive effect and is also compatible with aqueous lubricant compositions, it is provided according to the invention that the anticorrosive agent comprises (in percent by weight): a) more than 50% water, b) a surfactant; c) a boric acid derivative; d) a platelet-like or rod-like filler; e) optionally a binder; f) optionally a carboxylic acid salt.
Abstract:
Compositions and methods employing supercritical fluids, e.g., supercritical carbon dioxide, for removal of unwanted material from microelectronic device structures and process equipment. One composition of such type, having utility for removing flux and solder perform surface films, includes supercritical fluid, e.g., supercritical CO2, and organic co-solvent, e.g., xylene. Another composition of such type having utility for removal of metals, metal oxides, metal-containing post-etch residues and CMP particles from semiconductor substrates includes supercritical fluid and at least one β-diketone.
Abstract:
Process solutions comprising one or more surfactants are used to reduce the number of defects in the manufacture of semiconductor devices. In certain preferred embodiments, the process solution of the present invention may reduce defects when employed as a rinse solution either during or after the development of the CMP processing. Also disclosed is a method for reducing the number of defects on a plurality of post-CMP processed substrates employing the process solution of the present invention.
Abstract:
Iron surfaces are protected against corrosion by aqueous acidic solutions containing a polyhydric compound or derivative thereof by dispersing into the corrosive solution which will contact the metal surface an effective amount of a heterocyclic amine, an acetylenic alcohol and an ionizable iodine containing compound.