Abstract:
Use of a composition comprising a combination of a NAD+ precursor, preferably Nicotinamide Riboside and Vitamin B12 for increasing stem cell function in a population of haematopoietic stem and/or progenitor cells (HSPCs).
Abstract:
Methods of generating a population of tumor cells, such as circulating tumor cells (CTCs) isolated from fluid from a subject. The methods involve collecting a fluid sample containing the tumor cells from the subject, and culturing the tumor cells in the fluid sample in a three-dimensional cell culture, wherein the three-dimensional cell culture comprises at least one inhibitor of Rho-kinase to generate the population of CTCs. If the fluid is whole blood or contains blood, the method may also involve subjecting the fluid sample to density gradient separation to separate the tumor cells from the fluid prior to culturing. In addition, methods of identifying a candidate treatment for a subject having a condition marked by the presence of tumor cells, methods of monitoring in a subject the persistence, regression, or progression of a disease or condition marked by the presence of tumor cells, and methods of generating a cell line of tumor cells.
Abstract:
The present invention relates to adipose-derived stem cells (ASCs) and compositions, as well as methods for preparing and using such ASCs and compositions for therapy.
Abstract:
The present invention provides a method of isolating a pluripotent cell from a pre-implantation embryo without isolation of the pluripotent cells from other cells, the method including propagating a whole pre-implantation embryo including one or more pluripotent cells, embedded in a feeder cell layer and cultivated in a medium substantially free of serum, and isolating a pluripotent cell from the one or more pluripotent cells. The present invention also provides pluripotent cells generated by the method and uses thereof.
Abstract:
The present invention is directed towards methods of culturing non-keratinocyte epithelial cells, with the methods comprising culturing non-keratinocyte epithelial cells in the presence of feeder cells and a calcium-containing medium while inhibiting the activity of Rho kinase (ROCK) in the feeder cell, the non-keratinocyte epithelial cells or both during culturing.
Abstract:
The present invention pertains to a cell culture medium comprising media supplements that are shown to control recombinant protein glycosylation and/or cell culture in a controlled or modulated (shifted) temperature to control recombinant protein glycosylation and/or cell culture with controlled or modulated seed density to control recombinant protein glycosylation, and methods of using thereof. The present invention further pertains to a method of controlling or manipulating glycosylation of a recombinant protein of interest in a large scale cell culture.
Abstract:
The present invention is concerned with a composition and in vitro method for generating a desired cell type and/or tissue type from hair follicular stem cells. The composition and in vitro method are particularly suitable for generating an autologous desired cell type and/or tissue type. Furthermore, the composition and method are especially efficient and suitable for use in the context of cosmetic cell and/or tissue transplantation in recipient areas of a subject experiencing cell and/or tissue loss caused by, for example, a wound, scar, burn injury, tissue degeneration, and aging. The composition and in vitro method are also suitable to circumvent complications related to infections and/or immune rejection of a cosmetic cell and/or tissue implant or graft.
Abstract:
The present invention is based in part on methods of differentiating fibroblast cells into adipocytes, osteocytes and chondrocytes. Additionally, the present invention provides agents and kits useful for differentiating fibroblast cells in adipocytes, osteocytes and chondrocytes. Further, the present invention provides for enhanced extracellular matrix deposition using complex sugars.
Abstract:
A cell of a cell line adapted to a protein-free and lipid-free medium, which is derived from CHO cells, can be stably used for production of recombinant proteins and can proliferate in a suspended state in a protein-free and lipid-free medium containing no exogenous growth factors. A method for adapting CHO cells by using a protein-free and lipid-free medium and a medium used for the method.
Abstract:
The invention pertains to the use of C2-C6alpha-hydroxy acids selected from L-3-phenyl lactic acid, mucic (galactaric) acid, gluconic acid, glucaric acid, glyceric acid, 2-hydroxy butyric acid, alpha-hydroxyisovaleric acid, alpha-hydroxyisocaproic acid and erythronic acid and combinations thereof, as a growth- and production promoting ingredient, in culture media for culturing eukaryotic cells. The invention further pertains to culture media containing these alpha-hydroxy acid derivatives at levels of at least 0.001 mg/l.