Abstract:
The present invention relates to the use of rotavirus particles for displaying a heterologous protein, alone or in complex with another molecule. The invention further relates to methods that employ these modified rotavirus particles to rapidly determine the structure of the heterologous protein or the complex using cryo-electron microscopy (cryo-EM). The invention also relates to a method of immunising a patient, wherein said method comprises administering to the patient the modified rotavirus particles of the invention.
Abstract:
The present invention provides novel lyophilized rotavirus vaccine formulations and methods of their preparation. The formulations include vaccine stabilizers, resulting in a vaccine formulation with enhanced stability and minimal loss of potency. The rotavirus vaccine formulations comprise an advantageous ratio of a disaccharide (such as sucrose) to an amino acid (such as glycine). The lyophilization results in a virus formulation with 100% virus preservation and residual moisture from about 0.8% to 1.4%.
Abstract:
The invention provides an attenuated rotavirus population comprising a single variant or substantially a single variant which is defined by a nucleotide sequence encoding at least one of the major viral proteins designated as VP4 and VP7. The invention particularly provides a rotavirus population designated as P43. The invention further provides a novel formulation for a rotavirus vaccine which is in the form of a quick dissolving tablet for immediate dissolution when placed on the tongue.
Abstract:
A method for producing novel African Green Monkey Kidney (AGMK) cell lines is taught. These cell lines which are free of viable adventitious microbial agents are useful as substrates for viruses and for the preparation of viral vaccines.
Abstract:
A method for producing novel African Green Monkey Kidney (AGMK) cell lines is taught. These cell lines which are free of viable adventitious microbial agents are useful as substrates for viruses and for the preparation of viral vaccines.
Abstract:
This invention relates to adjuvant formulations comprising various combinations of triterpenoids, sterols, immunomodulators, polymers, and Th2 stimulators; methods for making the adjuvant compositions; and the use of the adjuvant formulations in immunogenic and vaccine compositions with different antigens. This invention further relates to the use of the formulations in the treatment of animals.
Abstract:
Means and methods for producing mammalian viruses, the method comprising infecting a culture of immortalized human cells with a virus, incubating the culture infected with virus to propagate the virus under conditions that permit growth of the virus, and to form a virus-containing medium, and removing the virus-containing medium. The viruses can be harvested and be used for the production of vaccines. Advantages include that human cells of the present invention can be cultured under defined serum-free conditions and the cells show improved capability for propagating virus. Methods are provided for producing, in cultured human cells, influenza virus and vaccines derived thereof. This method eliminates the necessity of using whole chicken embryos for the production of Influenza vaccines. The method also provides for the continuous or batch-wise removal of culture media. As such, the present invention allows the large-scale continuous production of viruses to a high titer.
Abstract:
Means and methods for producing mammalian viruses, the method comprising infecting a culture of immortalized human cells with a virus, incubating the culture infected with virus to propagate the virus under conditions that permit growth of the virus, and to form a virus-containing medium, and removing the virus-containing medium. The viruses can be harvested and be used for the production of vaccines. Advantages include that human cells of the present invention can be cultured under defined serum-free conditions and the cells show improved capability for propagating virus. Methods are provided for producing, in cultured human cells, influenza virus and vaccines derived thereof. This method eliminates the necessity of using whole chicken embryos for the production of Influenza vaccines. The method also provides for the continuous or batch-wise removal of culture media. As such, the present invention allows the large-scale continuous production of viruses to a high titer.
Abstract:
The invention provides an attenuated rotavirus population comprising a single variant or substantially a single variant which is defined by a nucleotide sequence encoding at least one of the major viral proteins designated as VP4 and VP7. The invention particularly provides a rotavirus population designated as P43. The invention further provides a novel formulation for a rotavirus vaccine which is in the form of a quick dissolving tablet for immediate dissolution when placed on the tongue.
Abstract:
The present invention concerns a method for production of an active ingredient of a drug or diagnostic agent, in which (a) MDCK cells are infected with a virus; and (b) the MDCK cells are cultured in suspension culture on a commercial scale under conditions that permit multiplication of the viruses; in which culturing occurs in a volume of at least 30 L. The invention also concerns a method for production of a drug or diagnostic agent in which an active ingredient is produced according to the above method and mixed with an appropriate adjuvant, auxiliary, buffer, diluent or drug carrier.