Abstract:
A coasting control device for reducing uneasiness experienced by a driver when pressing a clutch pedal during coasting control. The device includes a clutch control unit that, when the clutch pedal is pressed during coasting control, controls an actuator to cause an amount of hydraulic oil that depends on the amount of depression of the clutch pedal to be ejected from a clutch-free operating cylinder.
Abstract:
A method for launching an automatic vehicle transmission utilizing dual clutches in place of a torque converter avoids clutch overheating, sudden launch or roll-back by placing a clutch in a slip mode only after the vehicle's brakes have been actuated and fully disengaging the clutch upon over-heating detection. When launch is initiated, a first gear engaged and the brakes are released, the associated clutch is fully engaged to avoid overheating.
Abstract:
Methods are provided for adapting clutches for use in unconventional drive trains, for example those used in hybrid vehicles having a electric motor/generator.
Abstract:
A control for a vehicle drive line system (10) including an automated vehicle master clutch (14) drivingly interposed in between a fuel-controlled engine (12) and the input shaft (20) of a mechanical transmission. At sensed idle conditions (THL
Abstract:
An improved automatic clutch control system for controlling a vehicle master clutch (16) drivingly interposed a throttle controlled engine (14) and a change gear transmission (12) in an automatic/semi-automatic mechanical transmission system (AMT) is provided. A monitored clutch parameter (CPV) is compared to a reference value (IEPCPV) to determine the expected point of incipient engagement of the clutch. The reference value is periodically updated, to compensate for wear and the like.
Abstract:
A method of controlling a clutch for vehicle may include determining, by a controller, raised offset engine torque, when engine torque is raised to a reference torque or more in an engine idle state, and controlling, by the controller, the clutch based on the determined offset engine torque.
Abstract:
A method may be provided for correcting a raw signal supplied by a pressure sensor in an all wheel drive system having a hydraulic pump and a hydraulic fluid. The method may include measuring the raw signal supplied by the pressure sensor, determining when the all wheel drive system is in a state where the hydraulic fluid is at a known pressure determined independently from the pressure sensor, determining a new zero-point offset by comparing the raw signal to a voltage value associated with the known pressure, and creating a corrected voltage signal by adjusting the raw signal based on the new zero-point offset. This corrected voltage signal may be converted into a pressure reading for controlling the all wheel drive system.
Abstract:
A method for learning the bite point of a position-controlled clutch in a vehicle having an engine and a transmission includes commanding an engagement of a clutch fork via a controller when the transmission is in park and the engine is idling. The method also includes controlling an apply position of the clutch via the controller, calculating a clutch torque capacity of the clutch, and measuring the apply position via a position sensor. The apply position is recorded as the clutch bite point when the calculated clutch torque capacity equals a calibrated clutch torque capacity. The transmission is then controlled using the recorded clutch bite point. A system includes the transmission, input clutches, and a controller configured to execute the method. A vehicle includes an engine, the transmission, the position-controlled input clutch, and the controller, as well as a clutch position sensor.
Abstract:
A power transmission comprises a continuously variable transmission CVT, which transmits a rotational driving force from an engine E, a starting clutch 5, which variably sets the transmission capacity for the continuously variable transmission CVT, and a control valve CV, which controls the engagement operation of the starting clutch 5. While the engine E is in a partial cylinder operation mode, the control valve CV controls the engagement operation of the starting clutch 5 to attain a predetermined transmission capacity at a rotational speed of the engine that is higher than for a case of the engine in an all cylinder operation mode.