Abstract:
A method for processing a signal originating from a position sensor of a motor vehicle control member, to produce a processed signal relating to the position of the control member. The method includes: a filtering phase in which the signal originating from the sensor is filtered using a first filter to obtain a first filtered signal, and a substitution phase in which the first filtered signal is supplied as the processed signal, a second signal being added to the first filtered signal if the instantaneous value thereof is greater than the value of a first threshold parameter, and, in the opposite case, the signal originating from the sensor is provided as the processed signal.
Abstract:
A method for controlling an automated friction clutch arranged in a drive train of a motor vehicle in the force flow between a drive engine (3) and a drive transmission (4), which is configured to close passively by spring pressure and can be disengaged and engaged by way of a pressure-medium-actuated clutch actuator (14), such that the actuation position x_K of the clutch actuator (14) or of an associated transmission element is determined and used for controlling the friction clutch (2). To improve the accuracy and reliability of the clutch actuation it is provided that in addition, an actuating pressure p_K of the clutch actuator (14) is determined and that a required change of the clutch torque M_K to a new nominal value M_K_soll takes place under pressure control, in that the actuating pressure p_K of the clutch actuator (14) is set to a nominal value p_K_soll which corresponds to the nominal value M_K_soll of the clutch torque M_K.
Abstract:
It is an object of the present invention to achieve stabilization of clutch transmission torque at the point of half clutch completion during a garage shift upon vehicle start up, and to thereby achieve smooth clutch engagement. In a vehicle power transmission device in which a fluid coupling and a wet friction clutch are provided in series at points on a power transmission path which extends from an engine to a transmission, and which performs engagement/disengagement control of the clutch by varying the pressure of operating fluid used for engagement/disengagement driving the clutch in accordance with duty pulse signals outputted from an electronic control unit, clutch engagement control is begun at the same time as (t1) the transmission is put into gear in a state of clutch disengagement when a vehicle is about to start up from a standstill. When the difference in rotation between the input and output sides of the fluid coupling reaches or exceeds a predetermined value (t3) during this clutch engagement control, a duty Dc corresponding to full clutch engagement is outputted from the electronic control unit.
Abstract:
A microprocessor-based electronic control system for a powershift transmission having at least one proportional actuator, such as a solenoid-operated proportional valve, is disclosed. The controller operates a plurality of on-off solenoid valves and solenoid-operated proportional valve to provide operator-selected gear shifts in both forward and reverse directions having controlled clutch engagements achieved by modulation of clutch engagement pressure by the proportional valve. The key parameters associated with the gradual clutch engagement are all easily varied by the controller, most under program control during operation, to provide for optimized clutch engagements for smooth gearshifts. The key parameters include: fast-fill clutch delay, initial clutch engagement pressure, rate of increase of clutch engagement pressure, and the length of the reduced pressure clutch engagement interval. The electronic controller also automatically modifies selected parameters in accordance with sensed changes in temperature, magnetic flux coupling between solenoids, and variations in the voltage supply provided to the series combination of the solenoid coil of proportional valve and its solenoid driver circuit. Preferred methods of operating the electronic controller and powershift transmission are also disclosed.
Abstract:
A device for engaging power takeoffs, primarily used to drive a load from the engine of a vehicle, has an electromagnet with a single winding of small size which is driven by a microprocessor system in PWM mode allowing to differentiate the current intensity of the engaging phase and of the phase of maintaining said engaging. The control system monitors, without the aid of external sensors, parameters such as electromagnet current, power supply and electromagnet voltage, electromagnet winding resistance, electromagnet winding inductance. From these parameters, the system is able to determine the engaging or unengaging position of the power takeoff, and it is able automatically to uncouple if the monitored parameters do not fall within the expected ranges, simultaneously notifying the user of the protective intervention.
Abstract:
A device for engaging power takeoffs, primarily used to drive a load from the engine of a vehicle, has an electromagnet with a single winding of small size which is driven by a microprocessor system in PWM mode allowing to differentiate the current intensity of the engaging phase and of the phase of maintaining said engaging. The control system monitors, without the aid of external sensors, parameters such as electromagnet current, power supply and electromagnet voltage, electromagnet winding resistance, electromagnet winding inductance. From these parameters, the system is able to determine the engaging or unengaging position of the power takeoff, and it is able automatically to uncouple if the monitored parameters do not fall within the expected ranges, simultaneously notifying the user of the protective intervention.
Abstract:
A torque transfer system of a motor vehicle has a clutch, a transmission, a control device, and a traction load detecting device. The traction load is the variable resistance that a vehicle has to overcome to start or to keep moving, e.g., going uphill or downhill, with a heavy or light load, with or without a trailer or a roof load. The control device controls the torque transfer system, in particular the clutch, dependent on input signals received from the traction load detecting device.
Abstract:
A rotation transmission device including a clutch having an inner member, an outer ring, and engaging elements provided between the inner member and the outer ring for selective transmission and shutoff of rotation power between the inner member and the outer ring, and an electromagnetic clutch having an electromagnetic coil for locking and disengaging the clutch. When the clutch is not engaged, a current of a lower level than required to lock the clutch is supplied to the electromagnetic coil of the electromagnetic clutch to shorten the response time. In another method, when DIRECT-CONNECT 4WD mode is selected, a current is intermittently supplied to an electromagnetic coil to reduce power consumption and heat buildup.
Abstract:
A motor vehicle wherein the power train comprises an automated clutch between the engine and a manually shiftable transmission. The control circuit for the clutch is designed in such a way that the clutch is disengaged in response to actuation of the gear shifting lever simultaneously with one or more additional undertakings such as actuation of the gas pedal and of one or more brakes, a reduction of the speed of the vehicle below a preselected value, and/or many others.
Abstract:
A method for controlling an automated friction clutch arranged in a drive train of a motor vehicle in the force flow between a drive engine (3) and a drive transmission (4), which is configured to close passively by spring pressure and can be disengaged and engaged by way of a pressure-medium-actuated clutch actuator (14), such that the actuation position x_K of the clutch actuator (14) or of an associated transmission element is determined and used for controlling the friction clutch (2). To improve the accuracy and reliability of the clutch actuation it is provided that in addition, an actuating pressure p_K of the clutch actuator (14) is determined and that a required change of the clutch torque M_K to a new nominal value M_K_soll takes place under pressure control, in that the actuating pressure p_K of the clutch actuator (14) is set to a nominal value p_K_soll which corresponds to the nominal value M_K_soll of the clutch torque M_K.