摘要:
A method for manufacturing a honeycomb structure includes molding a ceramic raw material to manufacture honeycomb molded bodies. The honeycomb molded bodies are fired to manufacture honeycomb fired bodies. End faces of at least two of the honeycomb fired bodies are joined interposing a joining material between the end faces to manufacture honeycomb joined bodies each having a length larger than a length of each honeycomb fired body. Side faces of the honeycomb joined bodies are bonded interposing an adhesive paste between the side faces to manufacture an aggregated body of the honeycomb joined bodies. The adhesive paste is dried and solidified to manufacture a honeycomb block including the aggregated body. The honeycomb block is separated at the joining material into at least two honeycomb blocks.
摘要:
A method is described for forming a permanently supported thin lamina using decomposable adhesives between a lamina and a temporary support element. The temporary support element may be bonded to a first surface of the lamina. A permanent support element may be applied to a second surface of the lamina, and the temporary support element debonded from the lamina by decomposing the adhesive.
摘要:
A method for manufacturing a honeycomb structure includes molding a ceramic raw material to manufacture honeycomb molded bodies. The honeycomb molded bodies are fired to manufacture honeycomb fired bodies. End faces of at least two of the honeycomb fired bodies are joined interposing a joining material between the end faces to manufacture honeycomb joined bodies each having a length larger than a length of each honeycomb fired body. Side faces of the honeycomb joined bodies are bonded interposing an adhesive paste between the side faces to manufacture an aggregated body of the honeycomb joined bodies. The adhesive paste is dried and solidified to manufacture a honeycomb block including the aggregated body. The honeycomb block is separated at the joining material into at least two honeycomb blocks.
摘要:
Damaged automobile windshields are removed using an array of laser diodes. The diodes are chosen to provide light energy at a wavelength to be focused on and absorbed by the ceramic layer coating the windshield edge and to which is bonded the adhesive layer which holds the windshield in place. In practice, the diode array is moved along the windshield edge directing light through the windshield at the ceramic layer. The laser array comprises a linear array of diodes, having a length to span the width of the adhesive band.
摘要:
A process for making multiple microelectronic ceramic substrates uses an interface layer between stacked layers of green sheets that are laminated with the interface layer, then fired to produce the ceramic substrates. The interface layer acts to protect the substrates, and to hold them together before firing, then thermally degrades at a desired point in the firing cycle to separate the individual substrates. The invention also includes the ceramic substrates produced by the method.
摘要:
The process for producing an organic EL panel according to the present invention is a process for producing an organic electroluminescent panel by forming an organic electroluminescent element on an ultrathin glass plate by vacuum deposition method, including forming electrodes on the ultrathin glass plate, by temporarily fixing the ultrathin glass plate to a supporting plate via a double-sided adhesive tape having a thermal release adhesive layer formed at least on one face of the base material layer, containing heat-expandable microspheres that start expansion and/or foaming at temperature higher than the vacuum deposition temperature.
摘要:
There is provided a method of making a heat treated (HT) coated article to be used in shower door applications, window applications, or any other suitable applications where transparent coated articles are desired. For example, certain embodiments of this invention relate to a method of making a coated article including a step of heat treating a glass substrate coated with at least a layer of or including diamond-like carbon (DLC) and an overlying protective film thereon. In certain example embodiments, the protective film may be of or include both (a) an oxygen blocking or barrier layer, and (b) a release layer. Following and/or during heat treatment (e.g., thermal tempering, or the like) the protective film may be removed. Other embodiments of this invention relate to the pre-HT coated article, or the post-HT coated article.
摘要:
Provided is a process for producing an organic EL panel by using an ultrathin glass plate, in which the ultrathin glass plate is not “fractured” or “cut” in the production process, the organic EL element is formed reliably when formed by vacuum deposition, and recovered without damage after the production process, and there is no need for installing an additional step of cleaning the rear face of the ultrathin glass plate. The process for producing an organic EL panel according to the present invention is a process for producing an organic electroluminescent panel by forming an organic electroluminescent element on an ultrathin glass plate by vacuum deposition method, comprising forming electrodes on the ultrathin glass plate, by temporarily fixing the ultrathin glass plate to a supporting plate via a double-sided adhesive tape having a thermal release adhesive layer formed at least on one face of the base material layer, containing heat-expandable microspheres that start expansion and/or foaming at temperature higher than the vacuum deposition temperature.
摘要:
A method is described for forming a permanently supported thin lamina using decomposable adhesives between a lamina and a temporary support element. The temporary support element may be bonded to a first surface of the lamina. A permanent support element may be applied to a second surface of the lamina, and the temporary support element debonded from the lamina by decomposing the adhesive.
摘要:
A primary object of the present invention is to provide a laminated sheet for firing having an identification part, the sheet being directly attachable to an adherend, having excellent heat resistance, being free from cracks, etc., during rapid temperature changes such as a rapid temperature increase and rapid water-cooling, and being flexible to follow the change in shape of the adherend. The laminated sheet for firing of the present invention comprises a protective sheet, a temporary adhesion layer, a heat-resistant base layer, a combustible adhesive layer, and a release sheet, which are laminated in this order; the heat-resistant base layer having a thickness of 30 μm or less, comprising a silicone resin and an inorganic powder, and having the identification part, the identification part being formed from a heat-resistant ink containing an inorganic pigment.