Abstract:
An oil repellent agent including a modified natural product having at least one hydroxyl group, wherein a hydrogen atom of the hydroxyl group is replaced with an R group represented by —Y—Z, wherein Y represents a direct bond, —C(═O)—, —C(═O)—NR′— or —C(═S)—NR′—, where R′ represents a hydrogen atom or a C1 to C4 alkyl group); and Z represents a hydrocarbon group having 1 to 40 carbon atoms and optionally having a substituent or a polysiloxane. The natural material is a natural product other than starch and preferably is a monosaccharide, a polysaccharide, glycerin or polyglycerin. Also disclosed is a textile product to which the oil-resistant agent is attached, an oil-resistant paper and a method of treating paper with the oil-resistant agent.
Abstract:
The present invention discloses a surface covering, in particular floor or wall covering, comprising at least one polymer layer comprising a blend of polymers, said blend of polymers comprising from 6.5 to 93.5% by weight of a cellulose ester and from 93.5 to 6.5% by weight of one or more polymers selected from the group consisting of (meth)acrylate comprising (co)polymers, vinyl alkanoate comprising (co)polymers, vinylacetals (co)polymers, (co)polyesters, (co)polyamides, polyurethanes, nitrile (co)polymers, styrene (co)polymers, vinylchloride (co)polymers, olefin (co)polymers, and ionomers.
Abstract:
A non-aqueous silver precursor composition contains at least 1 weight % of one or more (a) polymers that are certain cellulosic polymers; (b) reducible silver ions; and (c) an organic solvent medium consisting of: (i) a hydroxylic organic solvent having an α-hydrogen atom and a boiling point at atmospheric pressure of 100-500° C., and, optionally, (ii) a nitrile-containing aprotic solvent or a carbonate-containing aprotic solvent different from the (i) organic solvent, each having a boiling point at atmospheric pressure of 100-500° C. The (b) reducible silver ions are present in an amount of 0.1-400 weight %, based on the total weight of the one or more (a) polymers. This composition can be used to form silver nanoparticles under silver ion reducing conditions and then applied to various substrates to provide silver nanoparticle patterns.
Abstract:
A process and composition for coating a pipe and a pipe support includes mixing a cellulose acetate, a plasticizer, and an oil together so as to form a solid mixture, heating the solid mixture so as to form a liquid state, covering an area of the joinder of the pipe and the pipe support with the liquid state, and drying the liquid state on the area of the joinder. An ethylene-based polymer stabilizer is added to the mixture of the cellulose acetate, the plasticizer and the oil. The oil migrates by gravity from the liquid state from the covered pipe into an area of contact between the pipe and the pipe support. The liquid state is applied around the outer diameter of the pipe and over the outer surface of the pipe support underlying the outer diameter of the pipe.
Abstract:
A non-aqueous silver precursor composition contains at least 1 weight % of one or more (a) polymers that are certain cellulosic polymers; (b) reducible silver ions; and(c) an organic solvent medium consisting of: (i) a hydroxylic organic solvent having an α-hydrogen atom and a boiling point at atmospheric pressure of 100-500° C., and, optionally, (ii) a nitrile-containing aprotic solvent or a carbonate-containing aprotic solvent different from the (i) organic solvent, each having a boiling point at atmospheric pressure of 100-500° C. The (b) reducible silver ions are present in an amount of 0.1-400 weight %, based on the total weight of the one or more (a) polymers. This composition can be used to form silver nanoparticles under silver ion reducing conditions and then applied to various substrates to provide silver nanoparticle patterns.
Abstract:
A coating composition for application to a subsea component or structure includes a cellulose acetate, a plasticizer, a vegetable oil, a colorant, and a titanium dioxide stabilizer that are mixed together. The plasticizer is epoxidized linseed oil. The colorant is carbon black powder. The vegetable oil is selected from the group including vegetable oil and soybean oil.
Abstract:
A coating composition for application to a subsea component or structure has cellulose acetate an amount of approximately 47% by weight of the total composition, diisooctyl phthalate in an amount of approximately 17% by weight of the total composition, a fatty acid ester in an amount of approximately 23% by weight of the total composition, a vegetable oil in an amount of approximately 8% by weight of the total composition, a stabilizer and a silica amorphous in which the stabilizer and the silica amorphous are in amount of approximately 5% by weight of the total composition. The stabilizer can be either titanium dioxide or aluminum dioxide. The vegetable oil is canola oil.
Abstract:
Disclosed is a transparent conductive film that comprises at least one carrier layer disposed on the opposite side of a transparent support from at least one conductive layer, and at least one hardcoat layer disposed on the at least one carrier layer. Such films, which exhibit superior hardness, adhesion, and curl, are useful for electronics applications.
Abstract:
An optical cellulose acylate film comprising a polymer component which is a cellulose acylate obtained by substituting hydroxyl groups of a cellulose by an acetyl group and an acyl group having 3 or more carbon atoms, wherein a substitution degree A of the acetyl group and a substitution degree B of the acyl group having 3 or more carbon atoms satisfy the following formulae (I) and (II): 2.0≦A+B≦3.0 (I), 0
Abstract translation:一种光学纤维素酰化物膜,其包含通过用乙酰基和具有3个或更多个碳原子的酰基取代纤维素的羟基而获得的纤维素酰化物的聚合物组分,其中乙酰基的取代度A和取代度 具有3个或更多个碳原子的酰基的B满足下式(I)和(II):2.0< nEE; A + B&NlE; 3.0(I),0
Abstract:
A coating composition including an unsaturated resin selected from polyesters, alkyds or combinations thereof; an alkoxy (meth)acrylic functional monomer, and a thermoplastic compound containing active hydrogen groups; a curing agent; and a curing promoter such as at least one metal drier.