Abstract:
A thermal solution (10) for equipment containing a heat-generating component, which is positioned between the heat-generating component (100) and an external surface of the equipment (30), where the thermal solution facilitates heat dissipation from the heat-generating component while shielding the external surface from the heat generated by the heat-generating component.
Abstract:
Matériau multicouche à base de graphite expansé renforcé par un métal comprenant au moins une couche interne (10) en graphite expansé recomprimé et deux couches externes métalliques (20), le graphite expansé recomprimé ayant une densité supérieure à 1,6 g/cm 3 . Chaque couche externe métallique (20) a une épaisseur inférieure au dixième de l'épaisseur totale de la structure multicouche. Les couches externes métalliques (20) sont avantageusement munies de picots (21 ) régulièrement répartis et orientés vers la couche interne (10) en graphite expansé recomprimé, la densité desdits picots (21 ) étant supérieure à 25 par dm 2 et leur hauteur étant supérieure à 15% de l'épaisseur finale de la couche interne (10) en graphite expansé recomprimé. Lesdits picots peuvent résulter d'une perforation de la couche externe métallique (20), la paroi autour de l'orifice perforé étant déformée et présentant la forme d'une excroissance sensiblement axisymétrique.
Abstract:
A finstock material for heat dissipation, which includes at least one sheet of flexible graphite (20) sandwiched between two outer layers (30, 40).
Abstract:
Embodiments of the invention provide a thermal interface material. In one embodiment, carbon nanotubes are combined with an alignment material. The alignment material is aligned, which causes the carbon nanotubes to become aligned and efficiently conduct heat. The alignment material can, for example, be a clay material or a liquid crystal material.
Abstract:
Thermal interface compositions (10) contain both non-electrically conductive micronsized fillers (18) and electrically conductive nanoparticles (20) blended with a polymer matrix (16). Such compositions increase the bulk thermal conductivity of the polymer composites as well as decrease thermal interfacial resistances that exist between thermal interface materials and the corresponding mating surfaces. Such compositions are electrically non-conductive. Formulations containing nanoparticles (20) also show less phase separation of micron-sized particles (18) than formulations without nanoparticles (20). Methods for increasing heat transfer include using such compositions between heat producing components (12) and heat sinks (14). Electronic components utilizing such compositions are also disclosed.
Abstract:
An application specific heat sink assembly for dissipating heat from one or more electronic components is presented with a heat-dissipating substrate selected for one or more of its size, shape, mass, cost, thermal conductivity properties, environmental resistance; and one or more heat-dissipating studs. Each heat-dissipating stud may be attached to the heat-dissipating substrate such that an electronic component may be attached to each heat-dissipating stud with the heat-dissipating stud providing CTE transition between the heat-dissipating substrate and the electronic component to be cooled. The heat-dissipating studs may selectively provide electrical conduction or isolation to an electronic component to be cooled.
Abstract:
A heat sink apparatus is constructed from alternating longer and shorter sheets of graphite material sandwiched together such that the longer sheets extend beyond the shorter sheets to define fins. The directions of higher thermal conductivity of the anisotropic graphite material are oriented in the plane of the sheet. The longer and shorter sheets have base ends aligned together to define a generally planar base surface for engaging an electronic device to be cooled.
Abstract:
A composite heat sink apparatus includes a metal base which has a thermal conductivity of at least about 200 W/m 0 K. The metal base is preferably constructed either of copper of aluminum. The heat sink apparatus further includes a plurality of fins attached to the base, the fins being constructed of anisotropic graphite material having a direction of relatively high thermal conductivity perpendicular to the base.
Abstract translation:复合散热装置包括具有至少约200W / m K的热导率的金属基底。 金属基底优选由铝的铜构成。 散热装置还包括附接到基座的多个翅片,翅片由具有垂直于基座的相对高导热方向的各向异性石墨材料构成。
Abstract:
A process is presented for forming an anisotropic heat spreader or heat pipe, comprising forming a laminate comprising a plurality of flexible graphite sheets which comprise graphene layers; and directionally aligning the graphene layers of the laminate.