Abstract:
An interconnect terminal is formed on a semiconductor die by applying an electrically conductive material in an aerosol form, for example by aerosol jet printing. Also, an electrical interconnect between stacked die, or between a die and circuitry in an underlying support such as a package substrate, is formed by applying an electrically conductive material in an aerosol form, in contact with pads on the die or on the die and the substrate, and passing between the respective pads. In some embodiments a fillet is formed at the inside corner formed by an interconnect sidewall of the die and a surface inboard from pads on an underlying feature (underlying die or support); and the electrically conductive material passes over a surface of the fillet.
Abstract:
A conformal coating on a semiconductor die provides adhesion between the die and a support. No additional adhesive is necessary to affix the die on the support. The conformal coating protects the die during assembly, and serves to electrically insulate the die from electrically conductive parts that the die may contact. The conformal coating may be an organic polymer, such as a parylene, for example. Also, a method for adhering a die onto a support, which may optionally be another die, includes providing a coating of a conformal between the die and the support, and heating the coating between the die and the support. The conformal coating may be provided on a die attach area of a surface of the die, or on a die mount region of a surface of the support, or on both a die attach area of a surface of the die and on a die mount region of a surface of the support; and the conformal coating may be provided following placement of the die on the support.
Abstract:
Methods for forming connectors on die pads at a wafer level of processing include forming spots of a curable electrically conductive material over die pads and extending to or over the interconnect die edge; curing the conductive material; and in a wafer cutting procedure thereafter severing the spots. Also, die pad to z-interconnect connectors formed by the methods, and shaped and dimensioned accordingly. Also, stacked die assemblies and stacked die packages containing die prepared according to the methods and having die pad to z-interconnect connectors formed by the methods and shaped and dimensioned accordingly.
Abstract:
Apparatus for making electrical interconnection of semiconductor die includes a transfer carrier having an electrically conductive material arranged in a pattern on a transfer surface. A transfer process for electrical interconnect includes steps of aligning the transfer apparatus with an edge of a die to be interconnected; and moving the transfer apparatus toward the die edge (or moving the die edge toward the transfer apparatus, or moving both the transfer carrier and the die edge in relation to one another) to bring the patterned conductive material on the transfer surface and interconnect terminals on the die into contact. In some embodiments the carrier is left in place in a functioning interconnected device; in other embodiments the transfer carrier and the die edge are separated to leave at least a portion of the conductive material in contact with the interconnect terminals.
Abstract:
Stackable integrated circuit devices include an integrated circuit die having interconnect pads on an active (front) side, the die having a front side edge at the conjunction of the front side of the die and a sidewall of the die, and a back side edge at the conjunction of back side of the die and the sidewall; the die further includes a conductive trace which is electrically connected to an interconnect pad and which extends over the front side edge of the die. In some embodiments the conductive trace further extends over the sidewall, and, in some such embodiments the conductive trace further extends over the back side edge of the die, and in some such embodiments the conductive trace further extends over the back side of the die. One or both of the die edges may be chamfered. Also, methods for making such a device. Also, assemblies including such a device electrically interconnected to underlying circuitry (e.g., die-to-substrate); and assemblies including a stack of at least two such devices interconnected die-to-die, or such a stack of devices electrically interconnected to underlying circuitry. Also, apparatus and methods for testing such a die.
Abstract:
Methods for forming connectors on die pads at a wafer level of processing include forming spots of a curable electrically conductive material over die pads and extending to or over the interconnect die edge; curing the conductive material; and in a wafer cutting procedure thereafter severing the spots. Also, die pad to z-interconnect connectors formed by the methods, and shaped and dimensioned accordingly. Also, stacked die assemblies and stacked die packages containing die prepared according to the methods and having die pad to z-interconnect connectors formed by the methods and shaped and dimensioned accordingly.
Abstract:
An interconnect terminal is formed on a semiconductor die by applying an electrically conductive material in an aerosol form, for example by aerosol jet printing. Also, an electrical interconnect between stacked die, or between a die and circuitry in an underlying support such as a package substrate, is formed by applying an electrically conductive material in an aerosol form, in contact with pads on the die or on the die and the substrate, and passing between the respective pads. In some embodiments a fillet is formed at the inside corner formed by an interconnect sidewall of the die and a surface inboard from pads on an underlying feature (underlying die or support); and the electrically conductive material passes over a surface of the fillet.
Abstract:
Stackable integrated circuit devices include an integrated circuit die having interconnect pads on an active (front) side, the die having a front side edge at the conjunction of the front side of the die and a sidewall of the die, and a back side edge at the conjunction of back side of the die and the sidewall; the die further includes a conductive trace which is electrically connected to an interconnect pad and which extends over the front side edge of the die. In some embodiments the conductive trace further extends over the sidewall, and, in some such embodiments the conductive trace further extends over the back side edge of the die, and in some such embodiments the conductive trace further extends over the back side of the die. One or both of the die edges may be chamfered. Also, methods for making such a device. Also, assemblies including such a device electrically interconnected to underlying circuitry (e.g., die-to-substrate); and assemblies including a stack of at least two such devices interconnected die-to-die, or such a stack of devices electrically interconnected to underlying circuitry. Also, apparatus and methods for testing such a die.
Abstract:
Fixtures for temporarily holding semiconductor die and for holding stacked die units, for application of a material such as electrical interconnection material to die edges, include a fixture frame, die or die stack supports, and a mask. Methods for applying material such as electrical interconnection material to die edges and to die stack units employ the fixtures using a mask lift-off step.
Abstract:
Fixtures for temporarily holding semiconductor die and for holding stacked die units, for application of a material such as electrical interconnection material to die edges, include a fixture frame, die or die stack supports, and a mask. Methods for applying material such as electrical interconnection material to die edges and to die stack units employ the fixtures using a mask lift-off step.