Abstract:
A vehicle includes a power feeding inverter that converts at least one of power discharged by a storage apparatus and power generated by activating an engine into alternating current power. The vehicle detects the presence of a user within a predetermined range of the vehicle using at least one of a seat occupancy sensor, a camera provided on the exterior or in the interior of the vehicle, and a reception unit that receives ratio waves from a smart key. When a request for power feeding from the vehicle is issued but the user has not been detected within the predetermined range of the vehicle, power generation by activating the engine is prohibited.
Abstract:
A system and method for ranking or scoring charging stations and/or charging events or sessions, and/or performing actions based on the ranking or scoring is described. In some embodiments, a charging station ranking engine is configured to rank charging stations, or potential charging events, based on feedback received from users of the charging stations, such as drivers of electric vehicles, or other dynamically determined factors.
Abstract:
Die vorliegende Erfindung betrifft Verfahren zur Gesamtmassenbestimmung eines elektrisch antreibbaren Fahrzeugs. Dabei wird bei rein elektrisch angetriebenem Fahrzeug unter Berücksichtigung einer Steigung und einer Reisegeschwindigkeit des Fahrzeugs eine Gesamtmasse des Fahrzeugs auf Basis des zweiten Newton'schen Gesetzes ermittelt. Alternativ oder zusätzlich kann eine Stauchungstrecke innerhalb einer Baugruppe des besetzten Fahrzeugs vermessen werden und aus einer vordefinierten bzw. zuvor ermittelten Steifigkeit der Stauchstrecke unter Berücksichtigung einer aktuellen Gewichtskraftverteilung auf die Gesamtmasse des Fahrzeugs geschlossen werden.
Abstract:
A network of collection, charging and distribution machines collect, charge and distribute portable electrical energy storage devices (e.g., batteries, supercapacitors or ultracapacitors). To charge, the machines employ electrical current from an external source, such as the electrical grid or an electrical service of an installation location. By default, each portable electrical energy storage device is disabled from accepting a charge unless it receives authentication information from an authorized collection, charging and distribution machine, other authorized charging device, or other authorized device that transmits the authentication credentials. Also, by default, each portable electrical energy storage device is disabled from releasing energy unless it receives authentication information from an external device to which it will provide power, such as a vehicle or other authorization device.
Abstract:
A network of collection, charging and distribution machines collect, charge and distribute portable electrical energy storage devices (e.g., batteries, supercapacitors or ultracapacitors). To charge, the machines employ electrical current from an external source, such as the electrical grid or an electrical service of an installation location. As demand at individual collection, charging and distribution machines increases or decreases relative to other collection, charging and distribution machines, a distribution management system initiates redistribution of portable electrical energy storage devices from one collection, charging and distribution machine to another collection, charging and distribution machine in an expeditious manner. Also, redeemable incentives are offered to users to return or exchange their portable electrical energy storage devices at selected collection, charging and distribution machines within the network to effect the redistribution.
Abstract:
In an energy storage system that includes a battery and an ultracapacitor, the state of charge (SOC) of the capacitor is the subject of a dynamic set-point. This dynamic set-point control is a function of the load regime to which the storage system is exposed, for example a hybrid automobile or electric automobile. The control may be based in part upon real-time fast Fourier transform analysis of load current, permitting real-time adjustment of control coefficients. In this way, it is possible to minimize the occurrence of the capacitor being fully charged at a time when it would be desired to be able to absorb high current, for example from regenerative braking. Likewise it is possible to minimize the occurrence of the capacitor being nearly discharged at a time when it would be desirable to have boost power available. A result is that even a relatively small ultracapacitor (having perhaps one two- hundredth the energy storage capacity of the battery) can permit greatly reducing waste heat dissipated in the battery, and can reduce otherwise unnecessary cycling of current into and out of the battery. This can extend battery life and battery performance.
Abstract:
An apparatus and method for controlling a steering command of a vehicle is provided. A deadband value based on a current state of a transporter is applied to a roll compensated steering command to control steering of the vehicle. A gain is applied to a steering command to control steering of the vehicle.
Abstract:
Ein Verfahren zum Starten eines Kraftfahrzeugs, insbesondere eines Hybridfahrzeugs (1) , bei dem über ein manuell bedienbares Starterelement ein Antriebsaggregat aktiviert wird, soll eine möglichst schnelle Inbetriebnahme ermöglichen. Dazu ist erfindungsgemäß eine Aktivierung einer Anzahl von elektronischen Systemen des Kraftfahrzeuges anhand eines vorgegebenen, von der Bedienung des Starterelements unabhängigen Auslösekriteriums, zeitlich vor der Bedienung des Starterelements vorgesehen.