Abstract:
A solid oxide fuel cell includes an anode layer, a cathode layer, and an electrolyte layer partitioning the anode layer and the cathode layer. The anode layer and the cathode layer are of about the same thickness and have about the same coefficient of thermal expansion (CTE).
Abstract:
A process for making large zircon blocks by bonding multiple zircon components, and bonding materials for use in such process. The invention enables the manufacture of large zircon blocks without the need of larger-size isopressing equipment. The invention is particularly useful in making large-size isopipes for use in a fusion down-draw process in making glass sheets for use in, e.g., LCD production.
Abstract:
A method for joining together two or more ceramic and/or metal parts by providing a braze consisting of a mixture of copper oxide, silver, and ceramic particulate. The braze is placed upon the surfaces of the parts, which are then held together for sufficient time and at a sufficient temperature to cause the braze to form a bond between the parts. The addition of the ceramic particulate increases the viscosity of the braze, decreasing squeeze out, decreasing the formation of air pockets, decreases the formation of brittle phases by providing nucleation sites and increases the flexural strength of the joint.
Abstract:
The present disclosure is directed to an integrated SOFC stack including, a first cell having a cathode layer, an electrolyte layer overlying the cathode layer, and an anode layer overlying the electrolyte layer. The SOFC stack also includes a second cell having a cathode layer, an electrolyte layer overlying the cathode layer, and an anode overlying the electrolyte layer. The SOFC stack further includes a ceramic interconnect layer between the first cell and the second cell, the ceramic interconnect layer having a first high temperature bonding region along the interfacial region between the first cell and the ceramic interconnect layer. The ceramic interconnect layer also includes a second high temperature bonding region along the interfacial region between the second cell and the ceramic interconnect layer.
Abstract:
A method for utilizing plastic deformation resulting from grain boundary sliding with or without a novel joint compound that leads to the joining of advanced ceramic materials, intermetallics, and cermets. A joint formed by this approach is as strong as or stronger than the materials joined. The method does not require elaborate surface preparation or application techniques. The method also allows for the formation of transparent joints between two subunits of a construct joined via plastic deformation. The method can be used to tailor residual stresses and maintain native porosity.
Abstract translation:蜂窝结构体,其中能够缓解由于体内的局部温度变化导致的热应力,其中不发生裂纹,具有高强度和耐久性,耐热冲击和振动,并且其中催化剂组分可以是高度的 分散。 蜂窝结构体被构造成使柱状蜂窝单元结合在一起,其间具有密封材料层,并且蜂窝单元各自具有并排布置的多个单元,其间具有单元壁,以便于 定向在单元的纵向方向。 蜂窝单元包含无机颗粒和无机纤维和/或晶须,每个蜂窝单元的与每个单元的纵向正交的横截面面积在5-50cm 2 / >,并且密封材料层的热膨胀系数a L L和蜂窝单元的热膨胀系数αH“满足0.01 = | a < F SUB> F SUB> F SUB>
Abstract:
A method of bonding ceramic members together and an insert material for heat-bonding used therein. In this method, ceramic members to be bonded together are subjected to dielectric heating in a state in which a heating ceramic material having a dielectric constant greater than that of the ceramic members is interposed therebetween. In such dielectric heating, mainly the heating ceramic having a higher dielectric constant is heated and a temperature of butting parts of the material and members is raised to a sufficient degree for bonding. In this bonding operation, the application of pressure to butting parts is preferable, however, not always necessary. When no pressure is applied, layers of bonding agent are preferably formed on the butting surfaces of the heat-bonding insert beforehand.
Abstract:
Die Erfindung betrifft ein Verfahren zur Herstellung eines Metall-Keramik-Substrates (1) umfassend eine erste und zweite Metallisierung (3, 4) und zumindest eine zwischen der ersten und zweiten Metallisierung (3, 4) aufgenommene Keramikschicht (2). Vorteilhaft werden eine erste und zweite Metallschicht (5, 6) und die Keramikschicht (2) übereinander gestapelt, und zwar derart, dass die freien Randabschnitte (5a, 6a) der ersten und zweiten Metallschicht (5, 6) jeweils randseitig über die Keramikschicht (2) überstehen, und zur Bildung eines gasdicht verschlossenen, einen Behälterinnenraum (8) einschließenden Metallbehälters (7) zur Aufnahme der Keramikschicht (2) die ersten und zweiten Metallschichten (5, 6) im Bereich der überstehenden freien Randabschnitte (5a, 6a) zueinander verformt und direkt miteinander verbunden werden. Anschließend werden die den Metallbehälter (7) bildenden Metallschichten (5, 6) mit der im Behälterinneren aufgenommener Keramikschicht (2) in einer Behandlungskammer bei einem Gasdruck zwischen 500 und 2000 bar und einer Prozesstemperatur zwischen 300°C bis zur Schmelztemperatur der Metallschichten (5, 6) zur Herstellung einer vorzugsweise flächigen Verbindung zumindest einer der Metallschichten (5, 6) und der Keramikschicht (2) heißisostatisch miteinander verpresst und zumindest die überstehenden, miteinander verbundenen freien Randabschnitte (5a, 6a) der Metallschicht (5, 6) zur Bildung der ersten und zweiten Metallisierung (3, 4) schließlich entfernt.