Abstract:
Verfahren zur Herstellung von α,ω-Alkandiol umfassend die Schritte a) Umsetzen einer Alkansäure mit einem Alkanol zu einem Ester, b) Oxidation wenigstens eines terminalen Kohlenstoffatoms des Esters durch Kontaktieren mit einem Ganzzellkatalysator, der eine Alkanhydroxylase exprimiert, in wässriger Lösung und in Gegenwart von molekularem Sauerstoff, zu einem oxidierten Ester, c) Hydrieren des oxidierten Esters unter Entstehung des Alkandiols und Alkanols, und d) destillatives Abtrennen des Alkanols unter Entstehung einer mit Hinblick auf das Alkanol abgereicherten Reaktionsmischung, und Rückführen des Alkanols in Schritt a).
Abstract:
The present invention relates to novel Ruthenium catalysts and related borohydride complexes, and the use of such catalysts, inter alia, for (1) hydrogenation of amides (including polyamides) to alcohols and amines; (2) preparing amides from alcohols with amines (including the preparation of polyamides (e.g., polypeptides) by reacting dialcohols and diamines and/or by polymerization of amino alcohols); (3) hydrogenation of esters to alcohols (including hydrogenation of cyclic esters (lactones) or cyclic di-esters (di-lactones) or polyesters); (4) hydrogenation of organic carbonates (including polycarbonates) to alcohols and hydrogenation of carbamates (including polycarbamates) or urea derivatives to alcohols and amines; (5) dehydrogenative coupling of alcohols to esters; (6) hydrogenation of secondary alcohols to ketones; (7) amidation of esters (i.e., synthesis of amides from esters and amines); (8) acylation of alcohols using esters; (9) coupling of alcohols with water to form carboxylic acids; and (10) dehydrogenation of beta-amino alcohols to form pyrazines. The present invention further relates to the novel uses of certain pyridine Ruthenium catalysts.
Abstract:
A catalyst and process for the production of methyl acetate by contacting dimethyl ether and carbon monoxide in the presence of a catalyst which is a zeolite of micropore volume of 0.01 ml/g or less.
Abstract:
Processes for producing jet fuel are disclosed. In one embodiment, syngas is converted to methanol, and a first portion of the methanol is converted to olefins using a methanol-to-olefins catalyst. The olefins are then oligomerized under conditions that provide olefins in the jet fuel range. The olefins can then optionally be isomerized and/or hydrotreated. A second portion of the methanol is converted to dimethyl ether, which is then reacted over a catalyst to form jet fuel-range hydrocarbons and aromatics. All or part of the two separate product streams can be combined, to provide jet fuel components which include isoparaffins and aromatics in the jet fuel range. The syngas is preferably derived from biomass or another renewable carbon-containing feedstock, thereby providing a biorefining process for the production of renewable jet fuel. In another embodiment, the process starts with methanol, rather than producing the methanol from syngas.
Abstract:
Изобретение относится к области нефтехимии, а именно, к способу синтеза высокооктановых кислородсодержащих компонентов моторного топлива. Объектами изобретения являются варианты способа синтеза высокооктановых кислородсодержащих компонентов моторного топлива из олефинсодержащих газовых смесей путем окислительных некаталитических превращений при помощи закиси азота с последующим конденсированием и гидрированием полученных оксигенатов с использованием гетерогенных катализаторов. Высокооктановые компоненты по предложенному способу представляют собой смесь карбонильных соединений (кетонов, альдегидов, гидроксикетонов, гидроксиальдегидов) C 2 -C 9 и/или разветвленных углеводородов C 5 -C 9 и/или спиртов в разных соотношениях. В зависимости от варианта способа получения, октановое число смешения предложенных высокооктановых компонентов составляет величины от 100 до 130 ОЧИ. Технический результат - расширение сырьевой базы для производства высокооктановых бензинов и ассортимента экологически чистых высокооктановых добавок.
Abstract:
An environmentally beneficial method of producing methanol from varied sources of carbon dioxide including flue gases of fossil fuel burning powerplants, industrial exhaust gases or the atmosphere itself. Converting carbon dioxide by electrochemical reduction produces formic acid acid and some formaldehyde and methanol mixtures. The formic acid can be used as source of carbon as well as hydrogen to produce methanol, dimethyl ether and other products.
Abstract:
The present application relates to methods of producing one or more fatty alcohols and/or one or more fatty aldehydes from one or more unsaturated lipid moieties by combining the obtainment or production of the one or more unsaturated lipid moieties from a biological source with conversion by non-biological means of the one or more unsaturated lipid moieties to one or more fatty alcohols and/or one or more fatty aldehydes. The present application also relates to recombinant microorganisms having a biosynthesis pathway for the production of one or more unsaturated lipid moieties. The one or more fatty alcohols can further be chemically converted to one or more corresponding fatty acetates. The one or more fatty alcohols, one or more fatty aldehydes and/or one or more fatty acetates produced by the methods described herein may be one or more insect pheromones, one or more fragrances, one or more flavoring agents, or one or more polymer intermediates.
Abstract:
본 발명은 탈알루미늄화된 제올라이트 담체에 고정된 팔라듐(Pd) 화합물을 포함하는 제 1 금속 촉매의 존재 하에, 테레프탈산을 환원시키는 단계; 및 탈알루미늄화된 제올라이트 담체에 고정된 루테늄(Ru) 화합물, 주석(Sn) 화합물 및 백금(Pt) 화합물을 금속의 중량을 기준으로 1:0.8 내지 1.2: 0.2 내지 0.6의 중량비로 포함하는 제 2 금속 촉매의 존재 하에, 상기 테레프탈산의 환원 결과물을 환원시키는 단계;를 포함하는, 1,4-사이클로헥산디메탄올의 제조 방법에 관한 것이다.
Abstract:
The invention relates to a surface modified metallic foam body containing an unmodified core and an alloy skin, obtainable by a process comprising the steps: (a) providing a metallic foam body comprising a first metallic material; (b) applying a second metallic material which is different from the first metallic material and which contains a first metallic compound that is leachable as such and/or that can be transformed by alloying into a second metallic compound that is leachable and different from the first metallic compound on a surface of the metallic foam body(a), by coating the surface of the metallic foam body with an organic binder and a powder of the second metallic material; (c) forming an alloy skin of the metallic foam body obtained in step (b) by alloying the first metallic material and the second metallic material; and (d) treating the alloyed metallic foam body obtained in step (c) with an agent that is capable of leaching out the leachable first and/or second metallic compound from the alloy skin of the metallic foam body, to leach out at least a part of the first and/or the second metallic compound from the alloy skin of the metallic foam body; wherein the thickness of the alloy skin is in the range of up to 50 µm as determined by electron microscopy. The invention moreover relates to a process for the production of the surface modified metallic foam body and a use of the surface modified metallic foam body.