Abstract:
A method for fabricating semiconductors is provided that includes an oxide chemical mechanical polish (CMP) step. Prior to performing the CMP of an integrated circuit semiconductor silicon wafer, a number of steps are performed. The silicon wafer is scrubbed with a brush using a liquid cleaner. The silicon wafer is rinsed with deionized water (DIW). Finally, the silicon wafer is dried.
Abstract:
A method for fabricating semiconductors is provided that includes an oxide chemical mechanical polish (CMP) step. Prior to performing the CMP of an integrated circuit semiconductor silicon wafer, a number of steps are performed. The silicon wafer is scrubbed with a brush using a liquid cleaner. The silicon wafer is rinsed with deionized water (DIW). Finally, the silicon wafer is dried.
Abstract:
A cleaning solution of the present invention contains a sodium ion, a potassium ion, an iron ion, an ammonium salt of a sulfuric ester represented by General Formula (1), and water, and each content of the sodium ion, the potassium ion, and the iron ion is 1 ppb to 500 ppb. ROSO 3 -(X)+ (1) where R is an alkyl group with a carbon number of 8-22 or an alkenyl group with a carbon number of 8-22, and (X)+ is an ammonium ion.
Abstract:
The cleaning of a surface of a semiconductor wafer by means of a chemico-physical polishing process with continuous rotation is achieved with an integrated continuous method, whereby the surface is first etched, then rinsed and finally dried.
Abstract:
A method for bonding a first semiconductor substrate to a second semiconductor substrate by direct bonding is described. The substrates are both provided on their contact surfaces with a dielectric layer, followed by a CMP step for reducing the roughness of the dielectric layer. Then a layer of SiCN is deposited onto the dielectric layer, followed by a CMP step which reduces the roughness of the SiCN layer to the order of 1 tenth of a nanometre. Then the substrates are subjected to a pre-bond annealing step and then bonded by direct bonding, possibly preceded by one or more pre- treatments of the contact surfaces, and followed by a post- bond annealing step, at a temperature of less than or equal to 250°C. It has been found that the bond strength is excellent, even at the above named annealing temperatures, which are lower than presently known in the art.
Abstract:
A method for treating a substrate surface uses Neutral Beam irradiation derived from a gas-cluster ion-beam and articles produced thereby including lithography photomask substrates. One embodiment provides a method of treating a surface of a substrate that contains one or more embedded particles or contains sub-surface damage, comprising the steps of: providing a reduced pressure chamber; forming a gas-cluster ion-beam comprising gas-cluster ions within the reduced pressure chamber; accelerating the gas-cluster ions to form an accelerated gas-duster ion-beam along a beam path within the reduced pressure chamber; promoting fragmentation and/or dissociation of at least a portion of the accelerated gas-cluster ions along the beam path; removing charged particles from the beam path to form an accelerated neutral beam along the beam path in the reduced pressure chamber; holding the surface in the beam path; and treating at least a portion of the surface of the substrate by irradiation.
Abstract:
The invention provides a method for differentially applying cleaning chemistries to a silicon wafer that has undergone a polishing process whether chemical mechanical polishing or polishing with a fixed abrasive material. In accordance with the invention, cleaning fluid with a specific chemistry designed for cleaning the front side of the wafer is applied to the front side; while different chemistry specifically selected for more effectively cleaning the rear side of the wafer is applied to that side. This application of different chemistries to the two sides of the wafer is referred to as "differential cleaning".
Abstract:
A removal composition and process for cleaning post-chemical mechanical polishing (CMP) contaminants and ceria particles from a microelectronic device having said particles and contaminants thereon. The removal compositions include at least one surfactant. The composition achieves highly efficacious removal of the ceria particles and CMP contaminant material from the surface of the microelectronic device without compromising the low-k dielectric, silicon nitride, or tungsten-containing materials.